
Note 7: Modular Arithmetic

CS 70, Summer 2024

1 Number Theory

1.1 Division

Before we begin our exploration of modular arithmetic, we recap some previous results in number theory
and develop some new ones.

We begin with the following definition.

Definition 1. For two integers a, b ∈ Z, we say that a divides b if there exists some integer k ∈ Z
such that

b = ak.

We write this as “a | b.”

This is a quite reasonable definition of one number dividing another—if a divides b, then we can write b as
the product of a and some integer.

Example 1. Determine which of the following are true.

(a) 1 | 4.

(b) 3 | 4.

(c) 2 | 0.

(d) 0 | 2.

(e) 0 | 0.

Let’s work through each of the parts.

(a) We can see that it is indeed true that 1 | 4 since 4 = 1 · 4. In fact, for any a ∈ Z, we have that 1 | a.

(b) We do not have 3 | 4. We can’t write 4 = 3k for k ∈ Z. In particular the integer multiples of 3 are
{3k : k ∈ Z} = {. . . ,−3, 0, 3, 6, 9, . . .}. This doesn’t include 4.

(c) 2 | 0 is true since we can write 0 = 2 · 0. We can extend this to say that a | 0 for any a ∈ Z.

(d) 0 ∤ 2. Note that 0 · k = 0 for any k ∈ Z, so we cannot have that 2 = 0 · k. So for any nonzero integer
a ∈ Z \ {0}, we have that 0 ∤ a.

(e) This last one is true, since 0 = 0 · k for any k ∈ Z. So 0 | 0.

Now that we have a better idea of what it means for two numbers to divide one another, let’s prove a small
but useful lemma about divisibility.

Lemma 1. Suppose that for integers a, b, d ∈ Z, we have that d | a and d | b. Then for any integers
x, y ∈ Z, we have that d | (ax+ by).

That is, if d divides both a and b, then d divides any sum of integer multiples of a and b.

Proof. Directly. Suppose that d | a and d | b. We must show that d | (ax+ by), i.e., find some integer
ℓ such that ax+ by = dℓ.
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By definition, there exist integers k, j ∈ Z such that a = dk and b = dj. Then

ax+ by = dkx+ djy = d(kx+ jy),

where ℓ = kx + jy ∈ Z since it is created by multiplying and adding integers. So we have that
ax+ by = dℓ for some ℓ ∈ Z. By the definition of divisibility, we have that d | (ax+ by).

1.2 Greatest Common Divisors

This brings us to the idea of a greatest common divisor.

Definition 2. For any two integers a, b ∈ Z, we say that the greatest common divisor of a and b is the
greatest d ∈ Z such that d | a and d | b. We write d = gcd(a, b) = gcd(b, a). We define as convention
that gcd(0, 0) = 0.

More formally, we say that d = gcd(a, b) if the following are true.

(1) d is a common divisor of a and b: d | a and d | b.

(2) For any other common divisor c of a and b, we have that c ≤ d.

This is definition is quite reasonable. It’s exactly what we’d expect of something that we call the “greatest
common divisor.” Let’s look at some examples.

Example 2. Find gcd(4, 18).

To find gcd(4, 18), we’ll check all possible divisors of 4 and 18 to see each is a common divisor. Then we’ll
simply take the largest one. The possible divisors are 0, 1, 2, 3, and 4; we don’t need to consider any integers
past 4 since a divisor is necessarily less than the dividend. We get the following.

0 ∤ 4 0 ∤ 18
1 | 4 1 | 18
2 | 4 2 | 18
3 ∤ 4 3 | 18
4 | 4 4 ∤ 18.

The common divisors of 4 and 18 are 1 and 2. Thus the greatest common divisor is 2. That is, gcd(4, 18) = 2.

Example 3. Show that for any natural number n ∈ N, gcd(n, 0) = n.

Note that the greatest any divisor of n can be is n itself. So if we are able to show that n is a common
divisor of both n and 0 we are done.

We can confirm that n | n since n = n · 1 and n | 0 since 0 = n · 0. Therefore gcd(n, 0) = n. This fact will
act as a “base case” for all of our gcd algorithms.

Finding the greatest common divisor was rather annoying. To find gcd(4, 18), we had to check whether every
natural number divided both 4 and 18. We’ll try to develop some number theory that allows us to quickly
compute gcds.

Let’s try and prove the following fact about the greatest common divisor of two integers.

Lemma 2. For any integers a, b ∈ Z, we have that gcd(a, b) = gcd(a− b, b).
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Proof. We will show that a and b have the same common divisors as a− b and b. Therefore they must
also have the same greatest common divisor.

Suppose that d | a and d | b. We then already have that d | b, so it remains to show that that d | (a−b).
By Lemma 1, we have that d | (a(1) + b(−1)). In other words, d | (a− b).

Now suppose that d | b and d | (b − a). We then already have that d | b, so it remains to show that
d | a. Again by Lemma 1, we have that d | ((b− a)(−1) + b(1)). In other worse, d | a.

This is very useful, since it allows us to simplify gcd problems into ones that are easier to work with.

Example 4. Use Lemma 2 to find gcd(24, 18) and gcd(3, 13).

By the lemma and the fact that gcd(a, b) = gcd(b, a) we have that

gcd(24, 18) = gcd(24− 18, 18) = gcd(6, 18)

= gcd(6, 18− 6) = gcd(6, 12)

= gcd(6, 12− 6) = gcd(6, 6)

= gcd(6− 6, 6) = gcd(0, 6)

= 6.

The same algorithm yields

gcd(3, 13) = gcd(3, 13− 3) = gcd(3, 10)

= gcd(3, 10− 3) = gcd(3, 7)

= gcd(3, 7− 3) = gcd(3, 4)

= gcd(3, 4− 3) = gcd(3, 1)

= gcd(3− 1, 1) = gcd(2, 1)

= gcd(2− 1, 1) = gcd(1, 1)

= gcd(1− 1, 1) = gcd(0, 1)

= 1.

That’s much faster than finding all the common divisors and taking the largest. However, it feels like there’s
still some area for tightening up this algorithm—what if instead of removing just copy of a in each of step,
we removed as many as possible? That would allow us to shortcut from gcd(18, 6) to gcd(0, 6) by removing
all three 6s in one step. Similarly, if we had instead removed all four 3s in one go, we could have gone straight
from gcd(3, 13) to gcd(3, 1). And then we could have gone straight to gcd(0, 1) by removing as many 1s as
possible.

In all of these “shortcuts,” by removing as many copies of a as we can from b, we’re left the remainder of b
when dividing by a. Towards this end, we prove the following theorem, known as the division algorithm.

Theorem 1. Division algorithm. For any integer a ∈ Z and divisor d ∈ Z+, there are unique integers
q, r ∈ Z such that 0 ≤ r < d and

a = qd+ r.

We call r the remainder of a when dividing by d, and write r = a mod d.

This is a somewhat complicated way of saying that a can be written as some integer multiple of d
with a remainder of r < d.

Proof. We first show that such q and r exist. Intuitively, we can get the remainder of a when dividing
by d by repeatedly subtracting off d and stopping right before we hit the negative numbers. That way
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we’ve removed as many ds from a as we can, and whatever is left is the remainder. So let’s define the
following set:

S = {a− dk : k ∈ Z ∧ a− dk ≥ 0}.

That is, S consists of the nonnegative differences you get by repeatedly subtracting d off from a.

We claim that S ̸= ∅. We can consider two cases: either a ≥ 0 or a < 0.

(1) a ≥ 0. Then we can pick k = 0 to get a = a− d · 0 ≥ 0. So a ∈ S.

(2) a < 0. Then we can pick k = a to get a − da = a(1 − d). Then a < 0 by assumption and
1− d ≤ 0 since d is a positive integer. So a− da = a(1− d) ≥ 0. Therefore a− da ∈ S.

In either case, there’s at least one element in S. So S is a non-empty subset of the natural numbers.
By the well-ordering principle, let r ∈ S be the smallest element of S. This r is precisely the remainder
we’re looking for.

Since r ∈ S, we have that r ≥ 0 and that r = a− dq for some q ∈ Z. We claim that r < d. Suppose
for contradiction that r ≥ d. Then r − d ≥ 0 and

r − d = a− dq − d = a− d(q + 1).

So r − d ∈ S. But then, since d > 0, r − d < r. This is a contradiction, since r was supposed to be
the smallest element of S. Our assumption that r ≥ d must be incorrect. So we have that r < d, as
desired.

So r = a − dq, with 0 ≤ r < d. Some rearranging gets us a = dq + r, so we have shown that such q
and r exist.

To show that these q and r are unique, consider two pairs q1, r1 and q2, r2 such that a = dq1+ r1 and
a = dq2 + r2. We will show that we must have that r1 = r2 and q1 = q2.

Suppose without loss of generality that r2 ≥ r1. Then r2 − r1 = d(q1 − q2) ≥ 0. So r2 − r1 is some
multiple of d; that is, r2 − r1 = dℓ for some ℓ ∈ Z. Note that ℓ ≥ 0 since r2 − r1 ≥ 0 and d > 0.

But since r2, r1 < d, it must be that r2 − r1 < d. So we cannot have ℓ ≥ 1, since that would make
r2 − r1 ≥ d. So it must be that ℓ = 0 and therefore r2 − r1 = d · 0 = 0. So r2 = r1.

Then

q1 =
a− r1

d
=

a− r2
d

= q2.

So we have shown that any division of a by d yields identical qs and rs; therefore q and r are unique.

We can use the division algorithm in combination with the following fact to derive a new algorithm for
computing the gcd.

Lemma 3. For any integers a, b ∈ Z, we have that gcd(a, b) = gcd(b, a mod b). That is, writing
a = bq + r by the division algorithm, we have that gcd(a, b) = gcd(b, r).

Proof. Left as an exercise.

Let’s see this in action.

Example 5. Use Lemma 3 to find gcd(29, 17).

To find this gcd, we’ll repeatedly apply the division algorithm. We’ll highlight the arguments to the gcd
algorithm in bold and leave the q coefficients from the division algorithm unbolded.
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gcd(29,17) = gcd(17,12) 29 = 1× 17+ 12

= gcd(12,5) 17 = 1× 12+ 5

= gcd(5,2) 12 = 2× 5+ 2

= gcd(2,1) 5 = 2× 2+ 1

= gcd(1,0) 2 = 2× 1+ 0

= 1.

This method for finding the gcd is known as the Euclidean algorithm. Let’s try to write it down formally.

Algorithm 1. Euclidean algorithm. For any two natural numbers a, b ∈ N, suppose without loss of
generality that a ≥ b. Then the following algorithm computes gcd(a, b).

gcd(a, b):

if b = 0 then
return a

else
return gcd(b, a mod b)

Note that this algorithm is recursive. Recursive algorithms lend themselves quite well to analysis by induc-
tion. Let’s prove that our algorithm actually works.

Theorem 2. The Euclidean algorithm, Algorithm 1, works.

Proof. By strong induction on b ≥ 0, the smaller of the two inputs. We prove that gcd(a, b) = gcd(a, b)
for all a ≥ b.

Base case. b = 0. When gcd(a, 0) runs, the first if-statement means that the algorithm will output
a. Therefore gcd(a, 0) = a = gcd(a, 0).

Induction case.

Induction hypothesis. Suppose that for some b ∈ N, the claim holds for all natural numbers up
to b. That is, for all k ≤ b, the gcd(a, k) = gcd(a, k) for any a ≥ k.

Induction step. Now we must show that the gcd algorithm correctly compute gcd(a, b + 1) for
any a ≥ b+ 1.

Let a ≥ b + 1 and consider gcd(a, b + 1). The algorithm returns gcd(b + 1, a mod (b+ 1)), where
a mod (b+ 1) ≤ b by the division algorithm (Theorem 1). Therefore we can apply the induction
hypothesis.

gcd(a, b+ 1) = gcd(b+ 1, a mod (b+ 1)) by Algorithm 1

= gcd(b+ 1, a mod (b+ 1)) by the induction hypothesis

= gcd(a, b+ 1). by Lemma 3

So the algorithm returns gcd(a, b+ 1), as desired.

1.3 Diophantine Equations

We wrap up our exploration of number theory by examining linear Diophantine equations. These are equa-
tions of the form

ax+ by = c,
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where a, b, c ∈ Z are known integers and x, y ∈ Z are unknown integers for which we are trying to solve. Do
such equations always have solutions? If a solution exists, is it unique? Let’s consider some examples.

Example 6. Show that 1 = 4x+ 2y has no integer solutions x, y ∈ Z.

Let’s suppose for contradiction that there is an integer solution x, y ∈ Z. Then we have that

1 = 4x+ 2y = 2(2x+ y) ⇐⇒ 2x+ y =
1

2
.

But 2x+ y is an integer since x and y are integers. This is a contradiction, so there must not be a solution.

Example 7. Show that 2 = 4x+ 2y has infinitely many integer solutions x, y ∈ Z.

We have that
2 = 4x+ 2y = 2(2x+ y) ⇐⇒ 1 = 2x+ y

By trial and error, x = 1 and y = −1 is a solution. So is x = 2, y = −3. In fact, for any x ∈ Z, we can pick
y = 1 − 2x. So any k ∈ Z, the pair x = k, y = 1 − 2k is a solution to the equation. Therefore there are
infinitely many solutions.

The following famous lemma will help us to characterize when solutions exist.

Lemma 4. Bezout’s identity. For any integers a, b ∈ Z, there exist integers x, y ∈ Z such that

ax+ by = gcd(a, b).

That is, we can always write the greatest common divisor of a and b as the sum of two integer multiples
of a and b.

Proof. Left as an exercise.

We’ll use Bezout’s identity to prove when linear Diophantine equations have solutions.

Theorem 3. Linear Diophantine equations. For a, b, c ∈ Z, let d = gcd(a, b). Then ax + by = c has
integer solutions x, y ∈ Z if and only if d | c.

Proof. ( =⇒ ) For the forwards direction, suppose that ax+ by = c has integer solutions x, y ∈ Z. By
Lemma 1, since d | a and d | b, we have that d | (ax+ by). So d | c.

(⇐= ) Now for the backwards direction, suppose that d | c. Then c = dk for some k ∈ Z. Moreover,
by Bezout’s identity, we have that there exist u, v ∈ Z such that

au+ bv = d.

Scale the equation by k to get that

a(ku) + b(kv) = dk = c.

So ku, kv ∈ Z are integer solutions to ax+ by = c.

Theorem 3 shows that solutions only exist when gcd(a, b) | c.

Concep Check 1. Confirm that Theorem 3 implies that Example 6 has no solutions and that
Example 7 has solutions.

Last modified July 22, 2024 at 11:57pm 6



So how can we find these integers x and y? The proof of Theorem 3 is not very constructive. We can do
it by working backwards through our output from the Euclidean algorithm.

Example 8. Use the calculation from Example 5 to find x and y such that 29x+ 17y = 1.

Note that in Example 5, we wrote each remainder in terms of the previous and next remainders, e.g.
17 = 1× 12+ 5, where here 12 is the remainder from the previous step and 5 is the new remainder. We’ll
flip each of the equations and successively apply the previous equations to eventually get our last remainder
of 1 = gcd(29,17) in terms of 29 and 17.

Let’s start by flipping the equations. The last equation is grayed out since we won’t be using it.

gcd(29,17) = gcd(17,12) 12 = 29− 1× 17 (1)

= gcd(12,5) 5 = 17− 1× 12 (2)

= gcd(5,2) 2 = 12− 2× 5 (3)

= gcd(2,1) 1 = 5− 2× 2 (4)

= gcd(1,0) 0 = 2− 2× 1

= 1.

Equation (4) tells us that 1 = 5− 2×2. But using equation (3), we can express 2 in terms of 5 and 12; and
then using equation (2), we can write 5 in terms of 12 and 17. Finally, using equation (1), we can write 12
in terms of 17 and 29. Once we’ve reached this point, everything in terms of 17 and 29, and we’ll have a
solution to our question.

Let’s see it in action.

1 = 5− 2× 2 by (4)

= 5− 2× (12− 2× 5) by (3)

= 5× 5− 2× 12

= 5× (17− 1× 12)− 2× 12 by (2)

= 5× 17− 7× 12

= 5× 17− 7× (29− 1× 17) by (1)

= 12× 17− 7× 29.

This process of working backwards through the equations from the Euclidean algorithm is known as the
extended Euclidean algorithm.

So we have that x = 12 and y = −7 are integer solutions to the Diophantine equation 17x+ 29y = 1.

We will not prove it here, but it is a true fact that whenever a linear Diophantine equation has one solution,
it has infinitely many.

Concept Check 2. Confirm that for any k ∈ Z, x = 12+29k and y = −7−17k are integer solutions
to 17x+ 29y = 1.

Concept Check 3. Suppose that x, y ∈ Z are integer solutions to the Diophantine equation ax+by =
c. Use x and y to construct infinitely many more integer solutions.

2 Modular Arithmetic

In many settings, arithmetic is done over a fixed, finite range of numbers. Such settings are especially
common in the computer sciences, since computers cannot do exact arithmetic over the real numbers—they
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don’t have infinite precision. Modular arithmetic is a system of arithmetic which limits the available
numbers to a discrete range and wraps around when any operations try to leave that range. For example,
you may have seen on a computer an integer overflow error, wherein a large positive integer result is instead
computed to be a very large negative integer. That kind of wrap around is precisely what modular arithmetic
is all about—it’s how computers do math.

The cyclical way in which humans measure time lends itself quite nicely to modular arithmetic—the hours
of the day have a cycle of 24 hours; the days of the week have a cycle of 7 days; the weeks of the year have
a cycle of 52 weeks, and so on. When calculating times with respect to these cycles, we automatically use
modular arithmetic.

For example, if it’s the second day of the week today (Monday), then in 13 days, it’ll be the first day of the
week (Sunday). We can think of that as 2 + 13 = 15 = 2(7) + 1. That remainder of 1 is what tells us it’ll
be Sunday. In fact, if we’re especially savvy, we might just work with remainders: 13 has a remainder of 6,
so we can say that it’ll be 2 + 6 = 8 = 1(7) + 1. If we’re even more savvy, we might say that 13 is one fewer
than a multiple of 7, so 2 + (−1) = 1.

Example 9. Let’s work in military time. Suppose it is currently the 10:00. What time will it be in
14 hours? In 25 hours? In 82 hours?

Since we’re working with time, we’re working with just the numbers 0 through 23. So we need to think
about each numbers remainder when divided by 24.

For 14 hours, that’s 10 + 14 = 24 = 1(24). So it’ll be 0:00.

For 25 hours, that’s 10 + 25 = 35 = 1(24) + 11. So it’ll be 11:00. We could also first reduce 25 to its
remainder when divided by 25, which is 1, and then do the arithmetic: 10 + 1 = 11.

The remainder of 82 when divided by 24 is 10. So that’s 10 + 10 = 20, or 20:00.

We call the positive integer with respect to which we take our remainder the modulus. For military time,
we’re doing arithmetic with respect to a modulus of 24. As we saw in the division algorithm, we will define
x mod m, said “x modulo m,” to be the remainder when the integer x is divided by the modulus m.

2.1 Modular Equivalences

We saw earlier that 82 was “like” 10 when working with a modulus of 24, since they have the same remainder
when divided by 24. Since we don’t want to write 82 = 10, since that looks like nonsense, we’ll instead define
a new notion of equality which only cares about the remainders with respect to a modulus.

Definition 3. For any integers a, b ∈ Z and any modulus m ∈ Z+, we say that a is congruent to b
modulo m if m | (a− b). We write this as

a ≡ b. (mod m)

That is, we would say that 82 is congruent to 10 modulo 24, and we would write 82 ≡ 10 (mod 24). However,
this definition doesn’t seem to be saying the same thing as what we were—that 82 and 10 have the same
remainder when divided by 24.

In fact, these two notions are equivalent—but it’s often easier to work with this definition. Let’s prove that
these two ideas of equality with respect to a modulus are actually the same.

Theorem 4. For any integers a, b ∈ Z and any modulus m ∈ Z+, a ≡ b (mod m) if and only if
a mod m = b mod m.

That is, a is congruent to b modulo m if and only if a and b have the same remainder when divided
by m.
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Proof. By the division algorithm, let

a = qm+ r

b = sm+ t

for integers q, s ∈ Z and remainders r, t ∈ {0, . . . ,m− 1}.

(⇐= ) Suppose that r = a mod m = b mod m = t. Then

a− b = qm+ r − (sm+ t) = m(q − s) + (r − t) = m(q − s).

By definition, m | (a− b), so a ≡ b (mod m).

( =⇒ ) Suppose that a ≡ b (mod m), that is, that m | (a− b). Therefore m | (m(q − s) + (r − t)), so
there is some integer k ∈ Z such that

m(q − s) + (r − t) = mk.

Then
r − t = m(k − q + s),

so there is an integer ℓ = m(k − q + s) ∈ Z such that r − t = mℓ. However, since 0 ≤ r, t < m, we
have that −m < r − t < m. We cannot have ℓ ≤ −1, since that would mean r − t ≤ −m; nor can we
have ℓ ≥ 1, since that would mean r − t ≥ m. So it must be that ℓ = 0. Therefore r − t = m · 0 = 0,
so r = t. That is, a mod m = b mod m, as desired.

We get a quite useful corollary out of this theorem.

Corollary 1. For any integers a, b ∈ Z and any modulus m ∈ Z+, a ≡ b (mod m) if and only if there
exists some integer k ∈ Z such that a = km+ b.

That is, two numbers are equivalent with respect to a modulus if they differ by some multiple of that
modulus.

Proof. ( =⇒ ) Let a = jm+ r for some j ∈ Z and r ∈ {0, . . . ,m− 1} by the division algorithm. Since
a ≡ b (mod m), by Theorem 4, we must have that b = ℓm+ r for some ℓ ∈ Z. Then r = b− ℓm, so
we can write

a = jm+ r = jm+ (b− ℓm) = (j − ℓ)m+ b.

So we have an integer k = j − ℓ ∈ Z such that a = km+ b, as desired.

(⇐= ) Suppose that a = km+ b. Then b− a = km, so m | (b− a). Therefore a ≡ b (mod m).

A note on notation. As we have seen, the notation r = a mod m refers to the remainder of a when divided
by m. This differs from b ≡ a (mod m), which says that b and a are equivalent modulo m. The distinction is
that a mod m refers to the smallest nonnegative integer which is equivalent to a modulo m. We will always
have that a mod m ∈ {0, . . . ,m − 1}. For example, a statement like 5 = 7 mod 2 is false, but a statement
like 5 ≡ 7 (mod 2) is true.

2.2 Modular Addition and Subtraction

Addition with respect to a modulus works just the way we’ve been doing it so far. But now that we have a
well-defined notion of equality with respect to a modulus, let’s prove that we can do what we’ve been doing.
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Theorem 5. Modular addition. For any integers a, b, c, d ∈ Z and any modulus m ∈ Z+, suppose
a ≡ b (mod m) and c ≡ d (mod m). Then a+ c ≡ b+ d (mod m).

Proof. By Corollary 1, we have that there are integers j, k ∈ Z such that a = km+b and c = jm+d.
Then

(a+ c) = km+ b+ jm+ d = (k + j)m+ (b+ d).

That is, a + c is b + d more than some multiple of m. Again by Corollary 1, this means that
a+ c ≡ b+ d (mod m).

Let’s do some examples.

Example 10. Evaluate each of the following expressions.

(a) (43 + 65) mod 6.

(b) (84 + 204 + 193 + 14323) mod 2.

(c) (44 + 123 + 104) mod 10.

Note that we’re being asked to find the remainders. For each modulus m, our answer needs to be in the
range {0, . . . ,m− 1}.

(a) Note that 43 = 6(7) + 1, so 43 ≡ 1 (mod 6). Similarly, 65 = 6(10) + 5, so 65 ≡ 5 (mod 6). Then by
Theorem 5, 43 + 65 ≡ 1 + 5 ≡ 6 ≡ 0 (mod 6). Our final answer is 0.

(b) When working with a modulus of 2, any even number is 0 and any odd number is 1. So 84 + 204 +
193 + 14323 ≡ 0 + 0 + 1 + 1 ≡ 2 ≡ 0 (mod 2). Our final answer is 0.

(c) When working with a modulus of 10, the remainder is just the ones digit. So 44+123+104 ≡ 4+3+4 ≡
11 ≡ 1 (mod 10). Our final answer is 1.

What about subtraction with respect to a modulus? For example, what would (3 − 6) mod 4 be? The
intuition is that it should wrap around the other way: −3 is just 4− 3 = 1. This is exactly the right idea.

Corollary 2. Modular subtraction. For any integer a ∈ Z and modulus m ∈ Z+, −a ≡ m − a
(mod m).

Proof. m− a− (−a) = m = m · 1. So m | (m− a− (−a)); therefore −a ≡ m− a (mod m).

This calls for a few more examples.

Example 11. Evaluate each of the following expressions.

(a) −4 mod 9.

(b) (43− 65) mod 6.

(c) (123− 423 + 14) mod 10.

We apply Corollary 2.

(a) −4 ≡ 9− 4 ≡ 5 (mod 9). The answer is 5.

(b) From Example 10, 43 ≡ 1 and 65 ≡ 5. Then −65 ≡ 6− 5 ≡ 1, so 43− 65 ≡ 1 + 1 ≡ 2 (mod 6). The
answer is 2.

Last modified July 22, 2024 at 11:57pm 10



(c) 123 ≡ 3 (mod 10), 423 ≡ 3 (mod 10), and 14 ≡ 4 (mod 10). Therefore 123− 423+ 14 ≡ 3− 3+ 4 ≡ 4
(mod 10). The answer is 4. Note that since 123− 423+ 14 is negative, this is not the ones digit of the
result. Rather, the ones digit is 10− 4 = 6.

2.3 Modular Multiplication

Multiplication with respect to a modulus works just the way you’d expect. Let’s prove it.

Theorem 6. Modular multiplication. For any integers a, b, c, d ∈ Z and any modulus m ∈ Z+, suppose
a ≡ b (mod m) and c ≡ d (mod m). Then ac ≡ bd (mod m).

Proof. By Corollary 1, we have that there are integers j, k ∈ Z such that a = km+b and c = jm+d.
Then

ac = (km+ b)(jm+ d)

= kjm2 + kmd+ jmb+ bd

= (kjm+ kd+ jb)m+ bd.

So ac is bd more than some multiple of m. By Corollary 1, this means that ac ≡ bd (mod m).

The other typical properties of arithmetic with numbers (association, commutation, distribution) all hold as
well—we won’t prove that.

Let’s practice this with some examples.

Example 12. Evaluate each of the following expressions.

(a) (65 · 43) mod 6.

(b) (103 · 2034 · 493) mod 10.

(c) (34 · (24− 32)) mod 3.

(a) As we have seen in Example 11, 65 ≡ −1 (mod 6) and 43 ≡ 1 (mod 6). So 65(43) ≡ (−1)(1) ≡ −1 ≡
5 (mod 6). The answer is 5.

(b) 103 ≡ 3 (mod 10), 2034 ≡ 4 (mod 10), and 493 ≡ 3 (mod 10). Therefore

103 · 2034 · 493 ≡ 3 · 4 · 3 ≡ 12 · 3 ≡ 2 · 3 ≡ 6 (mod 10).

The answer is 6.

(c) 34 ≡ 1 (mod 3), 24 ≡ 0 (mod 3), and 32 ≡ −1 (mod 3). So

(34 · (24− 32) ≡ 1 · (0− (−1)) ≡ 1 (mod 3).

The answer is 1.

Let’s use these properties to prove some number-theoretic results.

Example 13. Prove that for any n ∈ Z, we have that n2 ≡ 0 (mod 4) or n2 ≡ 1 (mod 4).

To prove the statement, we will consider the four possible remainders when dividing n by 4.

(1) n ≡ 0 (mod 4). Then n2 ≡ 02 ≡ 0 (mod 4).

(2) n ≡ 1 (mod 4). Then n2 ≡ 12 ≡ 1 (mod 4).
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(3) n ≡ 2 (mod 4). Then n2 ≡ 22 ≡ 4 ≡ 0 (mod 4).

(4) n ≡ 3 (mod 4). Then n2 ≡ 32 ≡ 9 ≡ 1 (mod 4).

In each case, we got that n2 ≡ 0 (mod 4) or n2 ≡ 1 (mod 4), as desired.

Example 14. Suppose m = 4k + 3 for some k ∈ Z. Then m cannot be written as the sum of the
squares of two integers.

We’ll use contradiction, since assuming that m is the sum of two squares gives us something to work with.
Suppose that for integers a, b ∈ Z, that m = a2 + b2. Using Example 13, we split into cases based on the
parity of a2 and b2 modulo 4.

(1) a2 ≡ b2 ≡ 0 (mod 4). Then m ≡ 0 + 0 ≡ 0 (mod 4).

(2) a2 ≡ 0 (mod 4),b2 ≡ 1 (mod 4). Then m ≡ 0 + 1 ≡ 1 (mod 4).

(3) a2 ≡ 1 (mod 4), b2 ≡ 0 (mod 4). Then m ≡ 1 + 0 ≡ 1 (mod 4).

(4) a2 ≡ b2 ≡ 1 (mod 4). Then m ≡ 1 + 1 ≡ 2 (mod 4).

Base on our cases, either m ≡ 0 (mod 4), m ≡ 1 (mod 4), or m ≡ 2 (mod 4). However, since m = 4k + 3,
m ≡ 4k+ 3 ≡ 3 (mod 4). This is a contradiction, so it must not be possible to write m = a2 + b2 as we had
assumed.

2.4 Modular Division

Understanding division with respect to a modulus requires some more thought. Typically, when we divide
two integers, we usually get a non-integer ratio like 3/2. What would dividing numbers look like over
something like {0, . . . ,m− 1}?

We’ll do something similar to what we did with modular addition and modular subtraction. That is, we just
defined modular subtraction by a as adding m − a. We’ll try and do something similar here: we’ll define
modular division by a as multiplying by some other number, which we call the multiplicative inverse of
a modulo m.

What should this number be? Over something like the real numbers, we know that dividing by a is the same
thing as multiplying by 1/a. Note that a · 1/a = 1. This is precisely how we’ll define modular division.

Definition 4. Modular inverses. For any integer a ∈ Z and modulus m ∈ Z+, if there exists an x ∈ Z
such that

ax ≡ 1 (mod m),

we say that x is an inverse of a modulo m. We write x ≡ a−1 (mod m).

We use a−1 mod m to refer to smallest nonnegative inverse of a modulo m.

Why is this a natural way to define the multiplicative inverse of a modulo m? Let’s imagine we were trying
to solve the equation 2x ≡ 3 (mod 5). Our inclination is to divide both sides by 2; while we can’t do that,
we can multiply both sides by 2−1 mod 5:

2−1 · 2x ≡ 2−1 · 3 (mod 5).

Then, by Definition 4, 2−1 · 2 ≡ 1 (mod 5), so

x ≡ 2−1 · 3 (mod 5).

Let’s do some examples.
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Example 15. Solve the following.

(a) Find 2−1 mod 5.

(b) Solve the equation 2x ≡ 3 (mod 5) for x, up to modular equivalence.

(c) Prove that 2 has no inverse modulo 4.

(a) By trial and error, 2 · 3 ≡ 6 ≡ 1 (mod 5). So 2−1 ≡ 3 (mod 5). That is, 3 = 2−1 mod 5.

(b) We can multiply both sides by 3 = 2−1 mod 5.

2x ≡ 3 (mod 5)

6x ≡ 9 (mod 5)

x ≡ 4 (mod 5).

As we hoped, multiplying by the inverse turned 2x into just x. Therefore x ≡ 4 (mod 5) solves the
equation.

(c) For any n ∈ Z, we have that n mod 4 ∈ {0, 1, 2, 3}. Let’s consider the four cases.

(1) n ≡ 0 (mod 4). Then 2n ≡ 2 · 0 ≡ 0 (mod 4).

(2) n ≡ 1 (mod 4). Then 2n ≡ 2 · 1 ≡ 2 (mod 4).

(3) n ≡ 2 (mod 4). Then 2n ≡ 2 · 2 ≡ 4 ≡ 0 (mod 4).

(4) n ≡ 3 (mod 4). Then 2n ≡ 2 · 3 ≡ 6 ≡ 2 (mod 4).

In each of the four cases, 2n mod 4 ∈ {0, 2}. That is, there is no n ∈ Z such that 2n ≡ 1 (mod 4). So
no inverse exists.

We saw in the last part of Example 15 that inverses don’t always exist. In particular, we weren’t able to
find an inverse for 2 modulo 4 because they shared factors in common—so they have overlapping cycles that
never differ by one. In fact, if two numbers don’t share any factors in common—that is, if their greatest
common divisor is 1—we are guaranteed that an inverse exists. We have a special name for such numbers
whose greatest common divisor is 1.

Definition 5. Coprime numbers. For any integers a, b ∈ Z, we say that a and b are coprime or that
they are relatively prime if gcd(a, b) = 1.

Our shiny new definition allows us to describe when multiplicative inverses exist.

Theorem 7. For any integer a ∈ Z and modulus m ∈ Z+, a has a unique multiplicative inverse
modulo m if and only if a and m are coprime.

Proof. We show that an inverse exists if a and m are coprime. The reverse direction, as well as the
uniqueness, are left as an exercise.

(⇐= ) Suppose that gcd(a,m) = 1. By Bezout’s identity (Lemma 4), we have integers x, y ∈ Z such
that

ax+my = 1.

Taking this equation with respect to the modulus m, we get that

ax+my ≡ 1 (mod m)

ax+ 0 ≡ 1 (mod m)

ax ≡ 1 (mod m).

Last modified July 22, 2024 at 11:57pm 13



Therefore x ≡ a−1 (mod m).

This theorem gives us a way to find modular inverses—using the extended Euclidean algorithm. As we saw
in Section 1.3, the extended Euclidean algorithm allows us to find the coefficients x, y ∈ Z which satisfy
Bezout’s identity.

We saw in Example 8 that 12× 17− 7× 29 = 1. Taking this equation modulo 29 gets

12 · 17− 7 · 29 ≡ 12 · 17 ≡ 1 (mod 29),

so 12 = 17−1 mod 29. Similarly, taking the equation modulo 17 gets

12 · 17− 7 · 29 ≡ −7 · 29 ≡ 1 (mod 17),

so the multiplicative inverse of 12 ≡ 29 (mod 17) is −7 ≡ 10 (mod 17). That is, 12−1 mod 17 = 10.

2.5 Modular Exponentiation

Just like addition, subtraction, multiplication, and division, we can also define exponentiation with respect
to a modulus. We will define it recursively.

Definition 6. Modular exponentiation. For any integer a ∈ Z, modulus m ∈ Z+, and exponent n ∈ N,
we define the modular exponential an modulo m with the following recursion.

• a0 ≡ 1 (mod m).

• an+1 ≡ an · a (mod m).

We define a−n ≡ (a−1)n (mod m).

This definition of exponentiation with respect to a modulus works just the way we expect exponentiation to
work, since, just like regular exponentiation, this repeated multiplication.

Theorem 8. Modular exponentiation. For any natural numbers n, k ∈ N, integers a, b ∈ Z, and
modulus m ∈ Z+, the following are true.

(1) a ≡ b (mod m) =⇒ an ≡ bn (mod m).

(2) an+k ≡ anak (mod m).

(3) anbn ≡ (ab)n (mod m).

(4) (an)k ≡ ank (mod m).

(5) an−k ≡ ana−k (mod m).

(6) (a−n)k ≡ a−nk (mod m).

Proof. Because modular exponentiation is defined through recursion, it lends itself well to proof by
induction. All of these can be shown through induction. We will show (2) and (6). The rest are left
as exercises.

For (2), we use proof by induction on n. That is, for each n ∈ N we prove that for all k ∈ N we have
that an+k = anak.

Base case. n = 0. Then for any k ∈ N, we have that a0+k ≡ ak ≡ 1 · ak ≡ a0ak (mod m), as desired.

Induction case.

Induction hypothesis. For some n ∈ N, suppose that for all j ≤ n, for any ℓ ∈ N we have that
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aj+ℓ ≡ ajaℓ (mod m).

Induction step. For any k ∈ N, consider a(n+1)+k. We have that

a(n+1)+k ≡ a(n+k)+1)

≡ an+ka1 by the induction hypothesis with j = 1, ℓ = n+ k

≡ anaka1 by the induction hypothesis with j = n, ℓ = k

≡ ana1ak

≡ an+1ak. by the induction hypothesis with j = n, k = 1

By the principle of mathematical induction, we have shown that for all n ∈ N, for any k ∈ N,
an+k ≡ anak (mod m).

For (3), we can use induction in much the same way we would in (4). However, a quicker proof just
uses the result from (4):

(a−n)k ≡ ((a−1)n)k
(4)

≡ (a−1)nk ≡ a−nk.

Rules (2), (3), and (4) can be seen as consequences of the corresponding real number equalities. For example,
since an+k = anak for a ∈ R, the same equality is maintained in modular arithmetic.

Let’s see some examples.

Example 16. Evaluate each of the following expressions.

(a) 10394034 mod 10.

(b) (−4)3 mod 3.

(c) (433)−2 mod 5.

We’ll simplify these expressions using Theorem 8.

(a) We have that 1039403 ≡ 3 (mod 10). So 10394034 ≡ 34 ≡ 81 ≡ 1 (mod 10). Our answer is 1.

(b) −4 ≡ 3− 4 ≡ −1 ≡ 3− 1 ≡ 2 (mod 3). So (−4)3 ≡ 23 ≡ 8 ≡ 2 (mod 3).

(c) 43 ≡ 3 (mod 5), so (433)−2 ≡ 43−6 ≡ 3−6 ≡ (3−1)6 (mod 5).

Then 3−1 ≡ 2 (mod 5) since 3 · 2 ≡ 6 ≡ 1 (mod 5), so (3−1)6 ≡ 26 ≡ 64 ≡ 4 (mod 5).

There’s one key place where modular exponentiation differs from our typical exponentiation on the real
numbers. Over the real numbers, we have that if n = k, then an = ak—however this is no longer true with
modular exponentiation.

Example 17. Suppose that n ≡ k (mod m). Find a counterexample which shows that it is not
necessarily the case that an ≡ ak (mod m).

Let’s find an integer a ∈ Z, two exponents n,m ∈ N, and a modulus m ∈ Z+ such that the n ≡ k (mod m)
but an ̸≡ ak (mod m).

We can’t use a = 1, since its powers are all 1. So we’ll use a = 2. Then n = 1 and k = 4 are equivalent
modulo m = 3. That is, 1 ≡ 4 (mod 3). Then 21 ≡ 2 (mod 3), but 24 ≡ 16 ≡ 1 (mod 3). So we have our
counterexample.

In general, we can use (1) from Theorem 8 and simplifying with respect to our modulus to prevent our
modular exponentials from blowing up too quickly, which makes computation of large exponentials more
tractable.
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For example, to compute 36 (mod 5), we may do the following:

36 ≡ 3 · 3 · 34 ≡ 9 · 34 ≡ 4 · 34 (mod 5)

≡ 4 · 3 · 33 ≡ 12 · 33 ≡ 2 · 33 (mod 5)

≡ 2 · 3 · 32 ≡ 6 · 32 ≡ 1 · 32 (mod 5)

≡ 3 · 3 ≡ 9 ≡ 4 (mod 5).

However, this can take many iterations—especially for large exponents—since each iteration decrements the
exponent we’re dealing with by one.

For a faster algorithm, we can use the following observation which allows us to multiplicatively reduce
exponents.

For any n ∈ N, if n = 2k, then an = a2k = akak. If instead n = 2k + 1, then an = a2k+1 = akaka. Notice
that rather than decrementing the exponent n by 1, we’re dividing it by 2.

This motivates us to create the following repeat squaring algorithm.

Algorithm 2. Repeat squaring. For any integer a ∈ Z, exponent n ∈ N, and modulus m ∈ Z+, the
following algorithm computes an mod m.

exp(a, n, m):

if n = 0 then
return 1

else if n ≡ 0 (mod 2) then
ak ← exp(a, n/2,m)
return (ak · ak) mod m

else
ak ← exp(a, (n− 1)/2,m)
return (ak · ak · a) mod m

Let’s see this algorithm in action.

Example 18. Use the repeat squaring algorithm to find 1020 mod 7.

Since 10 ≡ 3 (mod 7), we know that 1020 ≡ 320 (mod 7). So we can instead find 320 mod 7.

Using the algorithm, we get the following decomposition.

320 ≡ (310)2 (mod 7)

310 ≡ (35)2 (mod 7)

35 ≡ (32)2 · 3 (mod 7)

32 ≡ (31)2 (mod 7)

31 ≡ (30)2 · 3 (mod 7)

30 ≡ 1 (mod 7).

Starting from the bottom and working our way up, we get

30 ≡ 1 (mod 7)

31 ≡ (30)2 · 3 ≡ 12 · 3 ≡ 3 (mod 7)

32 ≡ (31)2 ≡ (3)2 ≡ 9 ≡ 2 (mod 7)

35 ≡ (32)2 · 3 ≡ (2)2 · 3 ≡ 4 · 3 ≡ 12 ≡ 5 (mod 7)

310 ≡ (35)2 ≡ (2)2 ≡ 4 (mod 7)

320 ≡ (310)2 ≡ (4)2 ≡ 16 ≡ 2 (mod 7).
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That is, 1020 mod 7 = 2.

A similar approach does the repeat squaring first, and then decomposes our exponential into the repeat
squares second. That is, we can first evaluate 31, 32 = (31)2, 34 = (32)2, and so on, as follows.

31 ≡ 3 (mod 7)

32 ≡ (31)2 ≡ (3)2 ≡ 9 ≡ 2 (mod 7)

34 ≡ (32)2 · 23 ≡ 4 (mod 7)

38 ≡ (34)2 ≡ (4)2 ≡ 16 ≡ 2 (mod 7)

316 ≡ (38)2 ≡ (2)2 ≡ 4 (mod 7).

Once we have the repeat squares, we can then find a decomposition of our exponential in terms of the repeat
squares. In this case, we can use the decomposition 320 = 316 · 34.

320 ≡ 316 · 34 ≡ 4 · 4 ≡ 16 ≡ 2 (mod 7).

3 Fermat’s Little Theorem

Our investigation into modular exponentiation leads quite nicely into a spectacular result about modular
exponentials known as Fermat’s little theorem.

Let’s consider two sequences. The first is just the integers modulo 5:

1, 2, 3, 4.

The second is the remainders of multiples of 2 modulo 5:

1× 2 mod 5, 2× 2 mod 5, 3× 2 mod 5, 4× 2 mod 5.

Note that if we evaluate each term in the second sequence, we get the sequence

2, 4, 1, 3,

which is the same as our first sequence, but in a different order. Therefore if we multiply our first sequence
together, we should get the same thing as if we multiply the second sequence together:

1× 2× 3× 4 ≡ 2× 4× 1× 3 (mod 5)

1× 2× 3× 4 ≡ (1× 2)× (2× 2)× (3× 2)× (4× 2) (mod 5)

24 ≡ 24× 24 (mod 5)

4 ≡ 4× 24 (mod 5).

If we multiply each side by 4 = 4−1 mod 5, we get

24 ≡ 25−1 ≡ 1 (mod 5).

This result is a specific instance of Fermat’s little theorem.

Theorem 9. Fermat’s little theorem. For any prime p and any a ∈ {1, . . . , p− 1}, we have that

ap−1 ≡ 1 (mod p).

This theorem is quite useful for simplifying modular exponents when we’re working with a prime modulus.
For example, we could work through Example 18 much more quickly, without using the repeat squaring
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algorithm at all.

1020 ≡ 320 (mod 7)

≡ (36)3 · 32 (mod 7)

≡ 13 · 9 (mod 7) by Fermat’s little theorem

≡ 2 (mod 7).

Before we can prove this theorem, we’ll need to prove a few quick results.

Lemma 5. For any a ∈ Z and modulus m ∈ Z+ such that a and m are coprime, the numbers

0 mod m, a mod m, 2a mod m, 3a mod m, . . . , (m− 1)a mod m

are all distinct.

Proof. Suppose for contradiction that the numbers are not distinct; that is, suppose that there are
repeats in the sequence. In particular, suppose that for some j, k ∈ {0, . . . ,m − 1} with j ̸= k, we
have that ja mod m = ka mod m.

By Theorem 4, this means that ja ≡ ka (mod m). Since a and m are coprime, a−1 mod m exists
and therefore

ja ≡ ka (mod m)

jaa−1 ≡ kaa−1 (mod m)

j ≡ k (mod m).

Therefore m | (j − k), so there exists ℓ ∈ Z such that j − k = ℓm. However, since 0 ≤ j, k < m, we
have that −m < j − k < m. We cannot have that ℓ ≥ 1 since then j − k = ℓm ≥ m; likewise, we
cannot have ℓ ≤ −1, since then j − k = ℓm ≤ −m. It must be that ℓ = 0. So j − k = 0 ·m = 0, which
means that j = k.

This contradicts our assumption that j ̸= k. So our assumption that there were repeats must be false.
That is, the numbers must all be distinct.

Here’s a slightly more straightforward result.

Lemma 6. For any prime p and integer a ∈ Z, if a ̸≡ 0 (mod p), then we have that gcd(a, p) = 1.
That is, if a is not a multiple of p, then gcd(a, p) = 1.

Proof. By definition, since p is a prime, its only divisors are 1 and p. So the greatest common divisor
can only be 1 or p. We can see that 1 | a, so 1 is a common divisor.

Now suppose for contradiction that p | a. Then a = kp for some k ∈ Z, so a is a multiple of p. But
then a ≡ 0 (mod p), which is a contradiction. Therefore p ∤ a, so p is not a common divisor of a and
p.

Therefore the greatest common divisor is 1. That is, gcd(a, p) = 1.

Now we are ready to prove Fermat’s little theorem.

Theorem 10. Fermat’s little theorem. For any prime p and any a ̸≡ 0 (mod p), we have that

ap−1 ≡ 1 (mod p).
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Proof. Let S = {1, . . . , p − 1} be the set of nonzero integers modulo p. Consider the sequence of
numbers

a mod p, 2a mod p, . . . , (p− 1)a mod p.

Note that since these numbers are remainders modulo p, each term is in the set {0, 1, . . . , p− 1}.

By Lemma 6, gcd(a, p) = 1. Therefore, by Lemma 5, these numbers are all distinct. Moreover, we
claim that none of them are zero. By Lemma 5, the numbers

0 mod p, a mod p, . . . , (p− 1)a mod p.

are all distinct. In particular, the last p − 1 terms, which are exactly the terms in our sequence, are
all distinct from 0 = 0 mod p. Therefore none of the terms in our sequence are zero. So each term is
in the set {1, . . . , p− 1} = S.

Since each of the p − 1 terms in our sequence are distinct and in {1, . . . , p − 1}, they must include
each element of S exactly once. Suppose for contradiction that they did not. That is, suppose that
some element of S occurs more than once or never occurs in the sequence.

(1) Some element of S occurs more than once in the sequence. Then the terms in the sequence are
not distinct.

(2) Some element of S never occurs in the sequence. Then only p− 1− 1 = p− 2 elements occur in
the sequence. But there are p− 1 < p− 2 terms in our sequence, so by the pigeonhole principle,
some element of S must then occur twice. But then all the terms in the sequence are not distinct.

So the only option is that every element of S occurs exactly once in the sequence. That is, the numbers
in S and the numbers in the sequence are exactly the same.

Consider the product of all numbers in S, modulo p.

1 · 2 · . . . · (p− 2) · (p− 1) ≡ (p− 1)! (mod p).

If we instead take the product of all numbers in the sequence, modulo p, we get

a · 2a · . . . · (p− a)a · (p− 1)a ≡ ap−1(p− 1)! (mod p).

Since S and the sequence have the same elements, this product of our sequence must be equal to our
earlier product of S.

ap−1(p− 1)! ≡ (p− 1)! (mod p).

Finally, since p is prime, each of 1, 2, . . . p − 1 is coprime with p by Lemma 6, and hence has an
inverse modulo p. So (p− 1)! = 1 · 2 · 3 · . . . · (p− 1) has an inverse since 1, 2, . . . , p− 1 all have inverses.
That is,

(p− 1)!−1 ≡ 1−1 × 2−1 × . . .× (p− 1)−1 (mod p).

Therefore

ap−1(p− 1)! ≡ (p− 1)! (mod p)

ap−1(p− 1)!((p− 1)!)−1 ≡ (p− 1)!((p− 1)!)−1 (mod p)

ap−1 ≡ 1 (mod p).

The following corollary follows immediately from Fermat’s little theorem.

Corollary 3. For any prime p and any a ∈ {0, 1, . . . , p− 1}, we have that

ap ≡ a (mod p).
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Proof. Left as an exercise.

4 The Chinese Remainder Theorem

In Section 2.1, we were introduced to the idea of linear congruences: equations of the form

ax ≡ b (mod m)

for a, b ∈ Z, m ∈ Z+, and an unknown x ∈ Z which we wish to solve for. We saw in Section 2.4 how we
can use the idea of modular inverses to solve such equations.

If a and m are coprime, then a−1 exists and is unique modulo m. Moreover, it can be found using the
extended Euclidean algorithm. Therefore, when a and m are coprime, all solutions are given by

x ≡ a−1b (mod m).

4.1 Systems of Two Linear Congruences

A natural next step from linear congruences is to consider systems of linear congruences.

Example 19. Show that the following system of congruences has no solutions.

x ≡ 0 (mod 2)

x ≡ 1 (mod 4).

The first equation requires that x is even; that is, that x = 2k for some k ∈ Z. The second equation requires
that x is one more than a multiple of 4. That is, that x = 4j + 1. However, this means that x = 2(2j) + 1,
so x must be odd. This contradicts the fact that x is even, so no such x can exist.

The following theorem provides a sufficient condition for a system of two linear congruences to have a
solution.

Theorem 11. For m,n ∈ Z+ relatively prime and a, b ∈ Z, the system

x ≡ a (mod m)

x ≡ b (mod n)

has a solution, and it is unique modulo mn.

Proof. We tackle the existence of a solution first. We will construct u, v ∈ Z such that

u ≡ 1 (mod m) u ≡ 0 (mod n)

v ≡ 0 (mod m) v ≡ 1 (mod n).

We can think of u and v like “switches” which activate (become 1) when the right modulus is being
used. That is, u is a switch for m, and v is a switch for n.

Then x = au+ bv is a solution to the system, since

x ≡ au+ bv ≡ a · 1 + b · 0 ≡ a (mod m)

x ≡ au+ bv ≡ a · 0 + b · 1 ≡ b (mod n).

So let’s find out what u and v have to be. The constraint u ≡ 0 (mod n) means that u is a multiple
of n. That is, for k ∈ Z, u = kn. Now we apply the other constraint, which requires that

u ≡ kn ≡ 1 (mod m).
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By definition, this means that any k ≡ n−1 (mod m) will work, where n−1 exists modulo m since
gcd(m,n) = 1. In particular, we’ll use k = n−1 mod m.

A similar argument holds for v. Since v ≡ 0 (mod m), we must have j ∈ Z such that v = jm. And
then, since v ≡ jm ≡ 1 (mod n), we have that j = m−1 mod n works. Again, this inverse exists since
gcd(m,n) = 1.

Therefore

u = (n−1 mod m) · n
v = (m−1 mod n) ·m

works. In particular, our solution is

x = a · (n−1 mod m) · n+ b · (m−1 mod n) ·m.

Let’s confirm again that this solution works.

x ≡ a · (n−1 mod m) · n+ b · (m−1 mod n) ·m (mod m)

≡ a · n−1 · n+ b · (m−1 mod n) · 0 (mod m)

≡ a · 1 + b · 0 (mod m)

≡ a (mod m).

x ≡ a · (n−1 mod m) · n+ b · (m−1 mod n) ·m (mod n)

≡ a · (n−1 mod m) · 0 + b ·m−1 ·m (mod n)

≡ a · 0 + b · 1 (mod n)

≡ b (mod n).

We have that x ≡ a (mod m) and x ≡ b (mod n), as desired.

To show that the solution is unique modulo mn, suppose that x and y are two solutions to the system
of equations. That is,

x ≡ a (mod m)

x ≡ b (mod n)
and

y ≡ a (mod m)

y ≡ b (mod n).

Therefore

x ≡ y (mod m)

x ≡ y (mod n).

This means that m | (x − y) and n | (x − y). Since n and m are relatively prime, this means that
nm | (x− y); we use this fact without proving it. That is,

x ≡ y (mod mn).

We have shown that any two solutions are equivalent modulo mn.

Concept Check 4. Prove the unjustified step of the uniqueness proof in Theorem 11. That is,
prove that for a, b ∈ Z coprime and c ∈ Z, if a | c and b | c, then ab | c.

The following example allows us to see that this actually works.
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Example 20. Find the smallest odd natural number x which is two more than a multiple of three.

By simply thinking about this, we can see that x = 5 works. Let’s confirm that the method constructed in
Theorem 11 works as well.

The example says that x is odd, which means that x ≡ 0 (mod 2) and that x is two more than a multiple
of three, which means that x ≡ 2 (mod 3). That’s our system of congruences:

x ≡ 1 (mod 2)

x ≡ 2 (mod 3).

We need to construct the switches u and v. By Theorem 11,

u = (3−1 mod 2) · 3 = 1 · 3 = 3

v = (2−1 mod 3) · 2 = 2 · 2 = 4.

Therefore the solution as presented by Theorem 11 is

x = 1 · 3 + 2 · 4 = 11.

That’s a little strange—we got that x = 5 was the solution. But x = 11 also works. And if we think about
it, x = 17 also works, or x = 23. All these solutions differ by 6 = 2 · 3. This is the uniqueness part of
Theorem 11, which tells us that all solutions are equivalent modulo 2 · 3 = 6.

However, the example asks us for the smallest positive number. So x = 5 is our answer.

4.2 General Systems of Linear Congruences

Now we extend to systems of arbitrarily many linear congruences. The Chinese remainder theorem,
named after the Chinese mathematician Sunzi who first stated the theorem sometime between the 3rd and
5th centuries CE, provides a sufficient condition for such systems to have a solution.

Theorem 12. The Chinese remainder theorem. For m1, . . . ,mn ∈ Z+ pairwise coprime and any
a1, . . . , an ∈ Z, the following system of n ∈ N+ equations has a unique solution modulo m1 · . . . ·mn.

x ≡ a1 (mod m1)

x ≡ a2 (mod m2)

...

x ≡ an (mod mn).

Here, “pairwise coprime” means that gcd(mi,mj) = 1 for any i, j ∈ {1, . . . , n} with i ̸= j.

Proof. The proof follows the proof of Theorem 11 quite closely. We will construct switches s1, . . . , sn
such that

s1 ≡ 1 (mod m1) s1 ≡ 0 (mod m2) . . . s1 ≡ 0 (mod mn)

s2 ≡ 0 (mod m1) s2 ≡ 1 (mod m2) . . . s2 ≡ 0 (mod mn)

...
...

...

sn ≡ 0 (mod m1) sn ≡ 0 (mod m2) . . . sn ≡ 1 (mod mn).
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That is, for any i, j ∈ {1, . . . , n} with i ̸= j, the switch si activates under modulus mi and deactivates
under any other modulus mj :

si ≡ 1 (mod mi) si ≡ 0 (mod mj).

Then we can construct a solution as

x = a1s1 + . . .+ ansn =

n∑
i=1

aisi.

To construct switch si, we require that si ≡ 0 (mod mj) for any j ̸= i; that is, si must be a multiple
of every modulus mj except for mi.

Towards this end, let M = m1 · . . . ·mn be the product of all the moduli and let Mi = M/mi be the
product of all the moduli except for mi. Then Mi is a multiple of each modulus mj except for mi by
construction. We will use si = kMi so that for any j ̸= i,

si ≡ kMi ≡ 0 (mod mj).

We also require that si ≡ 1 (mod mi). This means that

kMi ≡ 1 (mod mi),

or, equivalently, that k ≡ M−1
i (mod mi). We will without proof assume that this inverse exists

modulo mi; in particular, we will use k = M−1
i mod mi.

Therefore, for each i ∈ {1, . . . , n}, we construct switch si as

si = (M−1
i mod mi) ·Mi.

Let us confirm that this yields a solution. For any i ∈ {1, . . . , n},

x ≡
n∑

i=1

aisi (mod mi)

≡ aisi +

n∑
j ̸=i

ajsj (mod mi)

≡ ai · (M−1
i mod mi) ·Mi +

∑
j ̸=i

aj · (M−1
j mod mj) ·Mj (mod mi)

≡ ai ·M−1
i ·Mi +

∑
j ̸=i

aj · (M−1
j mod mj) ·Mj (mod mi)

≡ ai · 1 +
∑
j ̸=i

aj · 0 (mod mi)

≡ ai.

So x solves the system of congruences.

To prove that the solution is unique modulo M , consider any two solutions x and y. Since they both
solve the system, we have that

x ≡ y (mod m1)

...

x ≡ y (mod mn).

So m1 | (x− y), . . . ,mn | (x− y). Since they are pairwise coprime, this means that their product M
also divides x− y. That is, M | (x− y); we use this fact without proof. So x ≡ y (mod M). Any two
solutions are congruent modulo M .
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The following example illustrates an application of the Chinese remainder theorem.

Example 21. Find the smallest integer solution to the following system.

x ≡ 2 (mod 3)

x ≡ 3 (mod 5)

x ≡ 2 (mod 7).

We first compute M1, M2, and M3.

M1 = 5 · 7 = 35

M2 = 3 · 7 = 21

M3 = 3 · 5 = 15.

Next, we compute the inverses M−1
1 mod m1, M

−1
2 mod m2, and M−1

3 mod m3.

M−1
1 mod m1 = 35−1 mod 3 = 2−1 mod 3 = 2

M−1
2 mod m2 = 21−1 mod 5 = 1−1 mod 5 = 1

M−1
3 mod m3 = 15−1 mod 7 = 1−1 mod 7 = 1.

In our penultimate step, we construct the switches s1, s2, and s3.

s1 = (M−1
1 mod m1) ·M1 = 2 · 35 = 70

s2 = (M−1
2 mod m2) ·M2 = 1 · 21 = 21

s3 = (M−1
3 mod m3) ·M3 = 1 · 15 = 15.

Finally, we construct a solution x.

x = a1s1 + a2s2 + a3s3 = 2 · 70 + 3 · 21 + 2 · 15 = 233.

However, the question asks for the smallest positive integer solution. Is our answer here the smallest positive
solution? By the Chinese remainder theorem (Theorem 12), all solutions are congruent modulo m1m2m3 =
3 · 5 · 7 = 105. So we can take the remainder of our solution modulo 105 to get the smallest positive solution.

233 mod 105 = 23.

Our answer is 23. Let’s check that this actually solves the equations.

23 ≡ 2 (mod 3) since 23 = 7(3) + 2

23 ≡ 3 (mod 5) since 23 = 4(5) + 3

23 ≡ 2 (mod 7) since 23 = 3(7) + 2.

Concept Check 5. Find the smallest positive integer solution to the following system of equations.

x ≡ 1 (mod 2)

x ≡ 2 (mod 3)

x ≡ 4 (mod 5).

Last modified July 22, 2024 at 11:57pm 24


	Number Theory
	Division
	Greatest Common Divisors
	Diophantine Equations

	Modular Arithmetic
	Modular Equivalences
	Modular Addition and Subtraction
	Modular Multiplication
	Modular Division
	Modular Exponentiation

	Fermat's Little Theorem
	The Chinese Remainder Theorem
	Systems of Two Linear Congruences
	General Systems of Linear Congruences


