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Our Plan

* Basic Notions.
* Graphs
* Path / walks / cycles.

e Eulerian Tours
* Existence
e Algorithm

Different kinds of graphs <
* Complete Graph / Trees / Hypercube

Planar graphs
* Euler’s Formula
* Five coloring theorem



Complete graphs (Cligues)
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Bipartite Graphs
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Root

Tree /

Trees in real life Leaves

Leaves
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Connected Acyclic undirected graph



Tree is a bipartite graph




Tree has v—1 edges

Proof.
When v = 1, the tree has no edge.
Suppose this is true for all tree with < v —1 vertices.
Take an arbitrary tree with v vertices.
We remove a leaf from it. Now it has v — 1 vertices.
We then add back the leaf, one more edge.



An connected graph with v—1 edges is a tree

Tree: Connected Acyclic undirected graph

Proof (Attempt).
When v = 1, the graph with no edge is acyclic.
Suppose this is true for all tree with < v —1 vertices.

Take an arbitrary connected graph with v vertices and v —1 edges.
We remove a vertex from it. Now it has v — 1 vertices.
Now how many edges left? Is the graph still connected???



An connected graph with v—1 edges is a tree

Tree: Connected Acyclic undirected graph

Observation.

There must be a vertex with degree-1 in this graph.

Proof.
2(v—1)
v

Average-degree = < 2. (handshaking lemma)



An connected graph with v—1 edges is a tree

Tree: Connected Acyclic undirected graph

Proof.

When v = 1, the graph with no edge is acyclic.
Suppose this is true for all tree with < v—1 vertices.

Take an arbitrary connected graph with v vertices and v — 1 edges.
We remove a degree-1 vertex from it.

Now it has v —1 vertices and v — 2 edges.

Since the vertex we remove is degree-1, it cannot be on any path/cycle.
The graph is still connected. By itis a tree.
After adding the vertex back, it is still connected & acyclic.



Hypercube

Definition-1.
are graphs with vertex set V = {0,1}" (all binary strings)
and edge set E = {(u,v)| u,v € {0,1}", u, v only differ in one place}.
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Hypercube

Definition-2.
of dimension n is defined by taking two copies of hypecubes
of dimension n — 1 and connect corresponding vertices by edge.




Hypercube
#tedge = n 2™ ~1 (handshaking lemma).
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Hamiltonian Cycle

Theorem.

Hamiltonian Cycle is a cycle that goes through each vertex in the graph
exactly once.




Hamiltonian Cycle

Definition.

is a cycle that goes through each vertex in the graph
exactly once.

Unlike Eulerian walks, there is no efficient algorithm for finding




Hamiltonian Cycle

Theorem.

If a graph has minimum degree > %, then there is a Hamiltonian Cycle.




Our Plan

* Basic Notions.
* Graphs
* Path / walks / cycles.

e Eulerian Tours
* Existence
e Algorithm

Different kinds of graphs
* Complete Graph / Trees / Hypercube

Planar graphs <4

* Euler’s Formula
* Five coloring theorem



Planar Graph

Observation
The same graph can be drawn in very different ways.




Planar Graph

Definition
A planar graph is a graph that can be drawn on a plane
without crossing edges.
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Why does planar graphs matter?
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Famous non-planar graphs

Magic circle



Famous non-planar graphs
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Any graph that contains K5 or K3 3 as a subgraph. /
Ks Any graph with too many edges (e > 3v — 6)
' (will prove this later!)




Fuler’s Formula

Theorem (Since ancient Greeks)
A polyhedral satisfiesv + f — e = 2.
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Euler’s Formula

Theorem (Since ancient Greeks)
A polyhedral satisfiesv + f — e = 2.

Octahedron Dodecahedron Icosahedron



Fuler’s Formula

Theorem (Since ancient Greeks)
A polyhedral satisfiesv + f — e = 2.

But ancient Greek don’t know how to prove it because they didn’t take 70.

”

The key is to



Polyhedrals are planar graphs




Polyhedrals are planar graphs

Tetrahedron Octahedron Hexahedron

Square pyramid Icosahedron Dodecahedron



Euler’s Formula

Theorem (Strengthened hypothesis)
A connected planar graph satisfiesv + f — e = 2.




Proof of Euler’s Formula

Proof.
When f = 1, the graph is connected & acyclic => tree.
Wehavee=v—1. v+ f—e=2
Suppose the formula is tree for all graphs with -1 faces.
Take a graph with f faces.
We remove one edge separating two faces.




Proof of Euler’s Formula

Proof.
When f = 1, the graph is connected & acyclic => tree.
Wehavee=v—1. v+ f—e=2
Suppose the formula is tree for all graphs with -1 faces.
Take a graph with f faces.
We remove one edge separating two faces.

1 4
f decrease by 1 and e decrease by 1. - /
We get a graph with f — 1 face. \
7/
/
6




Proof of 3v-6 rule

Theorem
A connected planar graph can have at most 3v — 6 edges.

Proof.
- A face is adjacent to = 3 edges.

- An edge is adjacent to < 2 faces.
We get 3/ = Ze.

We know v + [ —e = 2.
f=e+2—v,
3e+6—3v < 2e




Graph Coloring
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Two coloring Three coloring



Four coloring theorem

Theorem.
The regions on any map can be colored using four colors
such that no adjacent regions have the same color.

Created with mapchart.net ©



Four coloring theorem

Planar graph coloring = map coloring.
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Degree + 1 Coloring

Theorem

It is always possible to color a graph with (maximum degree) + 1 colors.

Proof.

Simply color each vertex using a color that is different from all its
neighbors.

(maximum degree) + 1 colors => never run out of color.



Six Coloring Theorem

Theorem
Any planar graph can be six-colored.

Proof.
2:(3v—6)
1Y

< 6.

e < 3v — 6 means average degree <

So there exists a vertex with degree 5.

Remove that vertex, color the rest of the graph first (
Add back that vertex, we never run out of color!



Hamiltonian Cycle

Theorem.

If a graph has minimum degree > g, then there is a Hamiltonian Cycle.

Proof.
If v=1, there is a Hamiltonian cycle.
Suppose this is true for v —1.

Take any graph with v vertices, remove an arbitrary vertex.



Hamiltonian Cycle

Theorem.

If a graph has minimum degree > g, then there is a Hamiltonian Cycle.

Proof.
Take any graph with v vertices, remove an arbitrary vertex.
By induction hypothesis, the rest of the graph has a Hamiltonian Cycle.




Hamiltonian Cycle

Theorem.

If a graph has minimum degree > g, then there is a Hamiltonian Cycle.

Proof.

1%
Removed vertex has degree p

There are only v-1 previous vertices.

=>two neighbors must be adjacent

1—2—3—...... V-1




Hamiltonian Cycle

Theorem.

If a graph has minimum degree > g, then there is a Hamiltonian Cycle.

Proof.

1%
Removed vertex has degree p

There are only v-1 previous vertices.
=> two neighbors must be adjacent
Splice!

1—2—3—...... V-1




Recent Advance

Hamiltonicity of expanders: optimal bounds and applications

Nemanja Dragani¢* Richard Montgomery | David Munh4 Correiat
Alexey Pokrovskiy® Benny Sudakov?
Abstract

An n-vertex graph G is a C-expander if |N(X)| > C|X]| for every X C V(G) with |X| < n/2C
and there is an edge between every two disjoint sets of at least n/2C vertices. We show that there is
some constant C' > 0 for which every C-expander is Hamiltonian. In particular, this implies the well
known conjecture of Krivelevich and Sudakov from 2003 on Hamilton cycles in (n,d, A)-graphs. This
completes a long line of research on the Hamiltonicity of sparse graphs, and has many applications.
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In Highly Connected Networks, There’s
Always a Loop

- Mathematicians show that graphs of a certain common type must contain

a route that visits each point exactly once.




