Lecture 21: Markov Chain - I

Recap: Random process

Probability Space

We can intuitively think of random process as evolving possibilities.

Random walk on a line:

Coupon Collector

- If you buy a bag, you get a uniformly random card from *n* cards.
- How many bag in expectation do you need to buy to collect all cards?

Vitamin problem:

Q6.3 Part 3

0.1 Points

Rafael tosses a fair coin repeatedly. Let T be the number of tosses until Rafael gets 3 heads.

○ Uniform

🔘 Bernoulli

O Binomial

○ Geometric

O Poisson

None

Shuffle Cards:

In every step, with prob ½, pick two random cards and swap them. with prob ½, do nothing.

What is shared by all of them

- State

- Transition between States

What is shared by all of them : Random Walk

- State : Position x

- Transition between States: with 1/3 prob x-1, with 2/3 prob x+1.

What is shared by all of them: Coupon collector

- State : The number of card x you already have

- Transition between States: with (n-i+1)/n prob x+1, with remaining prob stay x

What is shared by all of them: Vitamin Problem – The third head

- State : The number of head x you already have

- Transition between States: with ½ prob x+1, with ½ prob stay x

Q6.3 Part 3 0.1 Points

Rafael tosses a fair coin repeatedly. Let T be the number of tosses until Rafael gets 3 heads.

○ Uniform

🔘 Bernoulli

O Binomial

○ Geometric

O Poisson

None

What is shared by all of them: Shuffle Cards

- State : The order of cards (a permutation)

- Transition between States:

With probability 1/n^2 select cards (i,j) and swap them

A general process that rules them all: Markov Chain

Definition: A Markov Chain (X, P) contains

- A finite/infinite set of states X.

These are "vertices".

- Transitions P.

 $P_{i,j}$ is the probability that from state i, we transition to state j in the next step. $\forall i, \sum_{j} P_{i,j} = 1.$

These are "edges".

What is shared by all of them : Random Walk

- State : Position x

- Transition between States: with 1/3 prob x-1, with 2/3 prob x+1.

What is shared by all of them: Coupon collector

- State : The number of card x you already have

- Transition between States: with (n-i+1)/n prob x+1, with remaining prob stay x

What is shared by all of them: Vitamin Problem – The third head

- State : The number of head x you already have

- Transition between States: with ½ prob x+1, with ½ prob stay x

Q6.3 Part 3 0.1 Points

Rafael tosses a fair coin repeatedly. Let T be the number of tosses until Rafael gets 3 heads.

○ Uniform

🔘 Bernoulli

O Binomial

○ Geometric

O Poisson

None

What is shared by all of them: Shuffle 3 Cards JQK

- State : The order of cards (a permutation)
- Transition between States:

With probability 1/n^2 select cards (i,j) and swap them

What is shared by all of them: Shuffle 3 Cards JQK

- State : The order of cards (a permutation)
- Transition between States:

With probability 1/n² select cards (i,j) and swap them

Random Walk on Markov Chain

Definition:

A Random walk on a Markov Chain (X, P) is a sequence of states $X_0, X_1, X_2, ...$, It starts at a state X_0 . Then for each step t, X_t is sampled according to

$$\mathbb{P}[X_t = j \mid X_{t-1} = i, X_{t-2}, X_{t-3}, \dots, X_1] = \mathbb{P}[X_t = j \mid X_{t-1} = i] = P_{i,j}.$$

Remark:

- $\mathbb{P}[X_t = j | X_{t-1} = i, X_{t-2}, X_{t-3}, ..., X_1] = \mathbb{P}[X_t = j | X_{t-1} = i]$ is called the Markovian property (also called memoryless property.)

- Whether a process is memoryless or not, depends on how you define the states. It is memoryless when the state contains all the info that's useful for next step.

 $\mathbb{P}(X_0 = \text{cloud}) = 1.$

 $\mathbb{P}(X_0X_1X_2X_3 = \text{cloud, cloud, sun, thunder}) = 0.125 * 0.01 = 0.00125$ Picture is from Prof. Sinclair's slides in Spring 2024

 $\mathbb{P}(X_0X_1X_2X_3X_4 = \text{cloud, cloud, sun, thunder, rain}) = 0.00125 * 0.5 = 0.000625$ Picture is from Prof. Sinclair's slides in Spring 2024

Distribution of random walk

Definition:

Let π_0 be the distribution of X_0 ; $(\pi_0(j)$ denotes the probability of starting at j) π_1 be the distribution of X_1 ; π_2 be the distribution of X_2

Transition

$$\pi_{t}(j) = \mathbb{P}[X_{t} = j]$$

$$= \sum_{i \in \mathcal{X}} \mathbb{P}[X_{t-1} = i] \cdot \mathbb{P}[X_{t} = j \mid X_{t-1} = i]$$
(law of total probability)
$$= \sum_{i \in \mathcal{X}} \pi_{t-1}(i) \cdot P_{i,j}$$

Matrix-vector representation

Transition between states:

$$\mathbb{P}[X_t = j \mid X_{t-1} = i] = P_{i,j}.$$

We can write P as a matrix.

This is called the transition matrix.

Matrix-vector representation

:::

 $\frac{2}{3}$

Distribution π_t .

 π_0

For the distribution π_t of states at step t, we can write it as a row vector.

 $\frac{1}{3}$

Matrix-vector representation

Convergence

What is the distribution π_t as $t \to \infty$?

Example: When shuffling cards, will π_t converge?

Convergence

What is the distribution π_t as $t \to \infty$?

Example: When shuffling cards, will π_t converge? NO!

Convergence

What is the distribution π_t as $t \to \infty$?

Invariant Distribution (aka Stationary Distribution)

If it does converge, to which distribution?

Definition:

The invariant distribution of a Markov chain is the distribution π that satisfies the balance equation: $\pi = \pi \cdot P$

"If the distribution is already π , after one step of transition, it is still π ."

Note: If π is invariant distribution, When every $\pi_t = \pi$ for all π_{t+n} we have $\pi_{t+n} = \pi_t \cdot P^n = \pi$

Find Invariant Distribution: Solve balance equ

 $\pi = \pi \cdot P$ gives us |X| equations to solve for π .

Find Invariant Distribution: Solve balance equ

 $\pi = \pi \cdot P$ gives us |X| equations to solve for π .

However, this is not enough. Because these are homogenous equations.

If π is a solution, any $\alpha \cdot \pi$ will also be a solution.

Find Invariant Distribution: Solve balance equ

 $\pi = \pi \cdot P$ gives us |X| equations to solve for π .

However, this is not enough. Because these are homogenous equations.

If π is a solution, any $\alpha \cdot \pi$ will also be a solution.

Add $\sum_{i \in X} \pi(i) = 1$.

When do we converge to stationary?

Non-convergent Case1: Periodic

For any two states $i, j \in X$, $gcd\{n: P^n(i, j) > 0\} = 1$.

That is, the lengths of all the paths $i \rightarrow j$ does not have a nontrivial common period.

Non-convergent Case2: reducible

Definition: We say a Markov chain is irreducible if For any two states $i, j \in X$, $\exists n. s.t. P^n(i, j) > 0$.

That is, there exists a path $i \rightarrow j$.

Non-convergent Case2: reducible

Definition: We say a Markov chain is irreducible if For any two states $i, j \in X$, $\exists n. s.t. P^n(i, j) > 0$.

That is, there exists a path $i \rightarrow j$.

Fundamental Theorem for Markov Chains.

Theorem:

If a finite Markov chain (X, P) is irreducible & aperiodic, then it has a unique Invariant distribution π with $\pi(i) > 0$ for all $i \in X$.

Also for any initial distribution π_0 , as $n \to \infty$, we have $\pi_n = \pi_0 \cdot P^n$ converges to π .

That is, as for all $i \in X$, as $n \to \infty$, we have $\mathbb{P}[X_n = i] \to \pi(i)$.