Lecture 21: Markov Chain - |




Recap: Random process

Probability Space
We can intuitively think of random process as evolving possibilities.
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Examples of random processes
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Random walk on a line:
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Examples of random processes

Coupon Collector

- If you buy a bag, you get a uniformly random card from
n cards.

- How many bag in expectation do you need to
buy to collect all cards?




Examples of random processes

Vitamin problem:

Q6.3 Part 3
0.1 Points

Rafael tosses a fair coin repeatedly. Let T" be the number of tosses
until Rafael gets 3 heads.

O Uniform

O Bernoulli

O Binomial

O Geometric

O Poisson

@® None



Examples of random processes

Shuffle Cards:

In every step, with prob 72, pick two random cards and swap them.
with prob %2, do nothing.



Can we unify all of them?

What is shared by all of them
- State

- Transition between States



Can we unify all of them?

What is shared by all of them : Random Walk
- State : Position x

- Transition between States: with 1/3 prob x-1, with 2/3 prob x+1.

1/3 2/3




Can we unify all of them?

What is shared by all of them: Coupon collector
- State : The number of card x you already have

- Transition between States: with (n-i+1)/n prob x+1, with remaining prob stay x




Can we unify all of them?

What is shared by all of them: Vitamin Problem — The third head
- State : The number of head x you already have

- Transition between States: with % prob x+1, with % prob stay x

Q6.3 Part3
0.1 Points

Rafael tosses a fair coin repeatedly. Let T be the number of tosses
until Rafael gets 3 heads.

O Uniform

O Bernoulli

O Binomial

O Geometric

O Poisson

@® None



Can we unify all of them?

What is shared by all of them: Shuffle Cards
- State : The order of cards (a permutation)

- Transition between States:
With probability 1/n”2 select cards (i,j) and swap them




Can we unify all of them?

A general process that rules them all: Markov Chain
Definition: A Markov Chain (X, P) contains
- A finite/infinite set of states X.
These are “vertices”.

- Transitions P.
P; ; is the probability that from state i, we transition to state j in the next step.

Vi, Z]Pl’] = 1.

These are “edges”.



Can we unify all of them?

What is shared by all of them : Random Walk
- State : Position x

- Transition between States: with 1/3 prob x-1, with 2/3 prob x+1.

2/3 2/3 2/3 2/3 2/3 2/3 2/3

1/3 1/3 1/3 1/3 1/3 1/3 1/3



Can we unify all of them?

What is shared by all of them: Coupon collector
- State : The number of card x you already have

- Transition between States: with (n-i+1)/n prob x+1, with remaining prob stay x

1/n 2/n 3/n
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Can we unify all of them?

What is shared by all of them: Vitamin Problem — The third head
- State : The number of head x you already have

- Transition between States: with % prob x+1, with % prob stay x

Q6.3 Part3
0.1 Points

1/2 QO Bernoulli

&)

1/2
Rafael tosses a fair coin repeatedly. Let T' be the number of tosses
until Rafael gets 3 heads.
O Uniform

O Binomial
O Geometric
O Poisson
@® None



Can we unify all of them?

What is shared by all of them: Shuffle 3 Cards JOK
- State : The order of cards (a permutation)

- Transition between States:
With probability 1/n”2 select cards (i,j) and swap them




Can we unify all of them?

What is shared by all of them: Shuffle 3 Cards JOK
- State : The order of cards (a permutation)
- Transition between States:
With probability 1/n”2 select cards (i,j) and swap them
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\ All edges have prob 1/3
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Random Walk on Markov Chain

Definition:
A on a Markov Chain (X, P) is a sequence of states X, X1, X, ...,
It starts at a state X,. Then for each step t, X; is sampled according to

PX;=j|Xi—1 =1, ]=[P)[Xt:j|Xt—1:i]=Pi,j-
Remark:
-PlX; =j | Xeq =1, | =P[X; =j| X;—1 = 1] is called the Markovian
property (also called )
- Whether a process is or not, depends on how you define the states. It is

when the state contains all the info that’s useful for next step.



Random Walk on Markov Chain - Example
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P(Xy = cloud) = 1.

Picture is from Prof. Sinclair’s slides in Spring 2024



Random Walk on Markov Chain - Example

K/-g. ‘
3 CQ‘/ e CO
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P(XoX1 = cloud, cloud) = P(Xq = cloud) * P¢oudcloud =1 * 0.5 =0.5

Picture is from Prof. Sinclair’s slides in Spring 2024



Random Walk on Markov Chain - Example

X1
Xo

1 QO-‘J’
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P(X¢X1X, = cloud, cloud, sun)
= P(X¢X1 = cloud, cloud) * P¢oud sun = 0.5 * 0.25=0.125

Picture is from Prof. Sinclair’s slides in Spring 2024



Random Walk on Markov Chain - Example

X1
Xo

1 QO-‘J’

Cg. ‘

L CO/ oa’ ‘Q
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P(XoX1X5X3 = cloud, cloud, sun, thunder) = 0.125 * 0.01 = 0.00125

Picture is from Prof. Sinclair’s slides in Spring 2024



Random Walk on Markov Chain - Example

X1
Xo

1 QO-‘J’
Cq ‘
o CQ‘/ @ ‘Q

P(X¢X1X2X3X,4 = cloud, cloud, sun, thunder, rain) = 0.00125 * 0.5 = 0.000625

Picture is from Prof. Sinclair’s slides in Spring 2024



Distribution of random walk

Definition:
Let 7y be the distribution of X;; (my(j) denotes the probability of starting at j)
11 be the distribution of X;;
7, be the distribution of X,

Transition
m:(j) = P[X; = J]
= ZiEXP[Xt—l =i -PlXe =j | Xeq =]
( )
= ;e Te-1(0) - Py j



Distribution of random walk Example
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Picture is from Prof. Sinclair’s slides in Spring 2024



Distribution of random walk - Example
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Picture is from Prof. Sinclair’s slides in Spring 2024



Matrix-vector representation

0.5
Transition between states: g / Q ~ oz
zs -\
P[Xe = jl X¢—1 = 1] = Py j. 05 7045 Toi 005 ; )o#

We can write P as a matrix. \ @

This is called the transition S5, W

g \\\

matrix. /];amsdim mave P‘—: «% [p5 025 045 O

g

049 0S5 O 0.0

S 025 O 073 005
" 0-5—0 050

Picture is from Prof. Sinclair’s slides in Spring 2024



Matrix-vector representation

0S5
Distribution 7. [;/-3. Q o
For the distribution 7, of os GO 5.25
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states at step t, we can write
it as a row vector. @
s W
<2 W ; Tanshan wavie  P= «2 [ps 025 055 O
_ 1 2 049 0S5 O 0.0
my = | 0, 3 3 0

S 025 O 073 005
" 0-5—0 050

Picture is from Prof. Sinclair’s slides in Spring 2024



Matrix-vector representation
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Picture is from Prof. Sinclair’s slides in Spring 2024



Matrix-vector representation

J
From m;_4 to m; . <3 W ;
my = (my(1),m1(2), 71 (3),m1(4))
Ty = Tg_q P ]
v= <32 [05 025 |05 0\4—1'
Y PEEEY L7 069 0S |0 | oo
1 2 v
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l Picture is from Prof. Sinclair’s slides in Spring 2024



Matrix-vector representation

From m;_q to ¢ .

Ty = T¢_q - P

> S \0-25 O |04 0.05/
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S L [;;
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Picture is from Prof. Sinclair’s slides in Spring 2024



Matrix-vector representation

From m;_q to ¢ .

Ty = T¢_q - P
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Picture is from Prof. Sinclair’s slides in Spring 2024



Matrix-vector representation

From m;_q to ¢ .

Ty = T¢_q - P
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Picture is from Prof. Sinclair’s slides in Spring 2024



Convergence

What is the distribution T as t — o0?

Example: When shuffling cards, will T, converge?
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All edge has prob 1/3




Convergence

What is the distribution T as t — o0?

Example: When shuffling cards, will t; converge? NO!

All edge has prob 1/3




Convergence

What is the distribution T as t — o0?

Example: When shuffling cards, will T, converge? Yes if add self-loops.

/\’\

\ All edge has prob 1/4
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Invariant Distribution
(aka Stationary Distribution)

If it does converge, to which distribution?

Definition:
The invariant distribution of a Markov chain is the distribution 7= that satisfies
the balance equation: m=mw - P

“If the distribution is already m, after one step of transition, it is still .”

Note: If m isinvariant distribution, When every 7, =  for all 7,,, we have

— n __
Mt4n = Mg =T



Find Invariant Distribution: Solve balance equ

m =1 - P gives us |X| equations to solve for .

[, 7))@ ) [05 025 05 ©

g

f 7t(), 77(27,1T(3),TT(¢)J
049 0S5 O 0.0

025 O 0% 005

= 05 ()« 0.49 W@ + 025 7(3) + 05l) = ()
02 () + 05 T(R) = @)
0.25 (") + 071 + 057(4) = T (3)

oolw®@ + D0.057(?) = ()

Picture is from Prof. Sinclair’s slides in Spring 2024



Find Invariant Distribution: Solve balance equ

m =1 - P gives us |X| eauations to solve for .

= 05 ()« 0.49 W + 0257 (3) + 05 7T() = 7())
02 w1 + 05 (?)

= 71'(2)
025 (V)

+ 013 + 057(4) = 7 (3)

o0lw@ + D0.057(3) = ()

However, this is not enough. Because these are homogenous equations.

If 77 is a solution, any a - m will also be a solution.

Picture is from Prof. Sinclair’s slides in Spring 2024



Find Invariant Distribution: Solve balance equ

m =1 - P gives us |X| eauations to solve for .

= 05 ()« 0.49 W + 0257 (3) + 05 7T() = 7())
02 w1 + 05 (?)

= | T (2)
025 (V)

+ 013 + 057(4) = 7 (3)

o0lw@ + D0.057(3) = ()

However, this is not enough. Because these are homogenous equations.

If 77 is a solution, any a - m will also be a solution.

Add ZiEXT[(i) = 1.

Picture is from Prof. Sinclair’s slides in Spring 2024



When do we converge to stationary?

Which Markov chains converge?
Is the stationary distribution always unique?

Counterexamples:

1/2 1/2




Non-convergent Casel: Periodic

Definition: We say a Mlarkov chain is aperiodic if
For any two states i,j € X, gcd{n: P"(i,j) > 0} = 1.

That is, the lengths of all the paths i — j does not have a nontrivial common period.



Non-convergent Case?2: reducible

1/2 1/2

0

Definition: We say a Vlarkov chain is irreducible if
For any two statesi,j € X, A n. s.t. P"(i,j) > 0.

That is, there exists a path i — J.



Non-convergent Case?2: reducible

ORNN©
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Definition: We say a is irreducible if
For any two statesi,j € X, A n. s.t. P"(i,j) > 0.

That is, there exists a path i — J.



Fundamental Theorem for Markov Chains.

Theorem:

If a finite Markov chain (X, P) is & , then it has a unique
Invariant distribution = with (i) > 0 for all i € X.

Also for any initial distribution y, as n — o, we have m,, = my - P" converges
to .

Thatis, as foralli € X, as n —» o, we have P[X,, = i] - m(i).



