
Lecture 21: Markov Chain - I
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Probability Space
 We can intuitively think of random process as evolving possibilities. 
 
 

Recap: Random process
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Examples of random processes
Random walk on a line:
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Examples of random processes
Coupon Collector
 
 
 

- If you buy a bag, you get a uniformly random card from 
	 𝑛 cards.  

-  How many bag in expectation do you need to 
    buy to collect all cards?



Examples of random processes
Vitamin problem:
 
 
 



Examples of random processes
Shuffle Cards:

In every step, with prob ½,   pick two random cards and swap them.
             with prob ½,   do nothing.
 
 



Can we unify all of them?
What is shared by all of them

 - State

 - Transition between States
 
 
 



Can we unify all of them?
What is shared by all of them : Random Walk

 - State :  Position x

 - Transition between States:  with 1/3 prob x-1, with 2/3 prob x+1. 
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Can we unify all of them?
What is shared by all of them: Coupon collector

 - State :  The number of card x you already have

 - Transition between States:  with (n-i+1)/n prob x+1, with remaining prob stay x
 
 
 



Can we unify all of them?
What is shared by all of them: Vitamin Problem – The third head

 - State :  The number of head x you already have

 - Transition between States:  with ½ prob x+1, with ½ prob stay x
 
 
 



Can we unify all of them?
What is shared by all of them: Shuffle Cards

 - State :  The order of cards (a permutation)

 - Transition between States:  
   With probability 1/n^2 select cards (i,j) and swap them
 
 
 



Can we unify all of them?
A general process that rules them all:  Markov Chain
 
Definition:  A Markov Chain (X, P) contains

 -  A finite/infinite set of states X.

    These are “vertices”.

 -  Transitions P.
    𝑃!,# is the probability that from state i, we transition to state j in the next step.
    ∀𝑖, 	 ∑#𝑃!,# = 1.

    These are “edges”.

 



Can we unify all of them?
What is shared by all of them : Random Walk 

 - State :  Position x

 - Transition between States:  with 1/3 prob x-1, with 2/3 prob x+1. 
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Can we unify all of them?
What is shared by all of them: Coupon collector

 - State :  The number of card x you already have

 - Transition between States:  with (n-i+1)/n prob x+1, with remaining prob stay x
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Can we unify all of them?
What is shared by all of them: Vitamin Problem – The third head

 - State :  The number of head x you already have

 - Transition between States:  with ½ prob x+1, with ½ prob stay x
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Can we unify all of them?
What is shared by all of them: Shuffle 3 Cards JQK

 - State :  The order of cards (a permutation)

 - Transition between States:  
   With probability 1/n^2 select cards (i,j) and swap them 
 
 



Can we unify all of them?
What is shared by all of them: Shuffle 3 Cards JQK
 - State :  The order of cards (a permutation)
 - Transition between States:  
   With probability 1/n^2 select cards (i,j) and swap them
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All edges have prob 1/3



Random Walk on Markov Chain
Definition:  
 A Random walk on a Markov Chain (X, P) is a sequence of states 𝑋', 𝑋(, 𝑋), … ,
   It starts at a state 𝑋'. Then for each step t, 𝑋* is sampled according to 

ℙ 𝑋* = 𝑗	 𝑋*+( = 𝑖	, 𝑋*+), 𝑋*+,, … , 𝑋(] = ℙ[𝑋* = 𝑗 	𝑋*+( = 𝑖 = 𝑃!,#.

Remark:
- ℙ 𝑋* = 𝑗	 𝑋*+( = 𝑖	, 𝑋*+), 𝑋*+,, … , 𝑋(] = ℙ[𝑋* = 𝑗 	𝑋*+( = 𝑖	 is called the Markovian 
property (also called memoryless property.) 

- Whether a process is memoryless or not, depends on how you define the states. It is 
memoryless when the state contains all the info that’s useful for next step.
 



Random Walk on Markov Chain - Example

Picture is from Prof. Sinclair’s slides in Spring 2024

𝑿𝟎

ℙ 𝑿𝟎 = cloud = 1. 



Random Walk on Markov Chain - Example

Picture is from Prof. Sinclair’s slides in Spring 2024

𝑿𝟎

𝑿𝟏

ℙ 𝑿𝟎𝑿𝟏 = cloud, cloud = ℙ 𝑿𝟎 = cloud 	∗ P/0123,/0123 = 1	 ∗ 0.5 = 0.5



Random Walk on Markov Chain - Example

Picture is from Prof. Sinclair’s slides in Spring 2024

𝑿𝟎

𝑿𝟏

𝑿𝟐

ℙ 𝑿𝟎𝑿𝟏𝑿𝟐 = cloud, cloud, sun
   	= ℙ 𝑿𝟎𝑿𝟏 = cloud, cloud ∗ P/0123,526 = 0.5 * 0.25 = 0.125



Random Walk on Markov Chain - Example

Picture is from Prof. Sinclair’s slides in Spring 2024

𝑿𝟎

𝑿𝟏

𝑿𝟐

𝑿𝟑
ℙ 𝑿𝟎𝑿𝟏𝑿𝟐𝑿𝟑 = cloud, cloud, sun, thunder	 = 0.125 * 0.01 = 0.00125 



Random Walk on Markov Chain - Example

Picture is from Prof. Sinclair’s slides in Spring 2024

𝑿𝟎

𝑿𝟏

𝑿𝟐

𝑿𝟑

𝑿𝟒

ℙ 𝑿𝟎𝑿𝟏𝑿𝟐𝑿𝟑𝑿𝟒 = cloud, cloud, sun, thunder, rain = 0.00125  * 0.5 = 0.000625



Distribution of random walk
Definition:  
 Let 𝜋' be the distribution of  𝑋';  (𝜋' 𝑗  denotes the probability of starting at 𝑗)
        𝜋( be the distribution of  𝑋(;
        𝜋) be the distribution of  𝑋)
                     ⋯⋯

Transition
 𝜋* 𝑗 = ℙ 𝑋* = 𝑗
             = ∑!∈Xℙ 𝑋*+( = 𝑖 ⋅ ℙ 𝑋* = 𝑗	|	𝑋*+( = 𝑖   
       (law of total probability)
             = ∑!∈X 𝜋*+( 𝑖 ⋅ 𝑃!,#  
       



Distribution of random walk - Example

Picture is from Prof. Sinclair’s slides in Spring 2024
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Distribution of random walk - Example

Picture is from Prof. Sinclair’s slides in Spring 2024
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Matrix-vector representation
Transition between states:  

ℙ[𝑋* = 𝑗 	𝑋*+( = 𝑖 = 𝑃!,#.

We can write 𝑃  as a matrix.

This is called the transition 
matrix.

Picture is from Prof. Sinclair’s slides in Spring 2024



Matrix-vector representation
Distribution 𝜋*.

For the distribution 𝜋*	of 
states at step t, we can write 
it as a row vector.

Picture is from Prof. Sinclair’s slides in Spring 2024

𝝅𝟎 = 0,
1
3
,

2
3
, 0



𝝅𝟎 = 0,
1
3
,

2
3
, 0

Matrix-vector representation
From 𝜋*+( to 𝜋*	.

Picture is from Prof. Sinclair’s slides in Spring 2024

𝜋* 𝑗 = G
!∈X

𝜋*+( 𝑖 ⋅ 𝑃!,# 
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Matrix-vector representation
From 𝜋*+( to 𝜋*	.

Picture is from Prof. Sinclair’s slides in Spring 2024

𝜋* = 𝜋*+( ⋅ 𝑃

𝑖

𝝅𝟏 = 𝜋((1), 𝜋((2), 𝜋((3), 𝜋((4)
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Matrix-vector representation
From 𝜋*+( to 𝜋*	.

Picture is from Prof. Sinclair’s slides in Spring 2024

𝜋* = 𝜋*+( ⋅ 𝑃
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Matrix-vector representation
From 𝜋*+( to 𝜋*	.

Picture is from Prof. Sinclair’s slides in Spring 2024

𝜋* = 𝜋*+( ⋅ 𝑃

𝑖

𝝅𝟏 = 𝜋((1), 𝜋((2), 𝜋((3), 𝜋((4)

𝑗
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Matrix-vector representation
From 𝜋*+( to 𝜋*	.

Picture is from Prof. Sinclair’s slides in Spring 2024

𝜋* = 𝜋*+( ⋅ 𝑃

𝑖

𝝅𝟏 = 𝜋((1), 𝜋((2), 𝜋((3), 𝜋((4)

𝑗

𝑗

𝑖
×



Convergence

JQK

JKQQJK

QKJ

KQJ

KJQ

All edge has prob 1/3

What is the distribution 𝜋* as 𝑡 → ∞?   

Example: When shuffling cards, will 𝜋* converge?



Convergence

JQK

JKQQJK

QKJ

KQJ

KJQ

All edge has prob 1/3

What is the distribution 𝜋* as 𝑡 → ∞?   

Example: When shuffling cards, will 𝜋* converge? NO!



Convergence

JQK

JKQQJK

QKJ

KQJ

KJQ

All edge has prob 1/4

What is the distribution 𝜋* as 𝑡 → ∞?   

Example: When shuffling cards, will 𝜋* converge? Yes if add self-loops.



Invariant Distribution 
(aka Stationary Distribution)
If it does converge, to which distribution?

Definition:
 The invariant distribution of a Markov chain is the distribution 𝜋	that satisfies 
   the balance equation:  𝜋 = 𝜋 ⋅ 𝑃

“If the distribution is already 𝜋, after one step of transition, it is still 𝜋.”

Note:  If  𝜋	 is invariant distribution,  When every 𝜋* = 𝜋	 for all 𝜋*;<	we have  
𝜋*;< = 𝜋* ⋅ 𝑃< = 𝜋



Find Invariant Distribution: Solve balance equ
𝜋 = 𝜋 ⋅ 𝑃  gives us |𝑋| equations to solve for 𝜋.

Picture is from Prof. Sinclair’s slides in Spring 2024



Find Invariant Distribution: Solve balance equ
𝜋 = 𝜋 ⋅ 𝑃  gives us |𝑋| equations to solve for 𝜋.

Picture is from Prof. Sinclair’s slides in Spring 2024

However, this is not enough.   Because these are homogenous equations.

If 𝜋 is a solution, any 𝛼 ⋅ 𝜋  will also be a solution.



Find Invariant Distribution: Solve balance equ
𝜋 = 𝜋 ⋅ 𝑃  gives us |𝑋| equations to solve for 𝜋.

Picture is from Prof. Sinclair’s slides in Spring 2024

However, this is not enough.   Because these are homogenous equations.

If 𝜋 is a solution, any 𝛼 ⋅ 𝜋  will also be a solution.

Add ∑!∈=𝜋 𝑖 = 1.



When do we converge to stationary?
Which Markov chains converge?  
Is the stationary distribution always unique?

Counterexamples:
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Non-convergent Case1: Periodic
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Definition: We say a Markov chain is aperiodic if
 For any two states 𝑖, 𝑗 ∈ X,  gcd{𝑛: 𝑃< 𝑖, 𝑗 > 0} = 1.

 That is, the lengths of all the paths 𝑖 → 𝑗 does not have a nontrivial common period.



Non-convergent Case2: reducible
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Definition: We say a Markov chain is irreducible if
 For any two states 𝑖, 𝑗 ∈ X,  ∃	𝑛. 	𝑠. 𝑡. 	 𝑃< 𝑖, 𝑗 > 0.

 That is, there exists a path 𝑖 → 𝑗.



Non-convergent Case2: reducible

Definition: We say a Markov chain is irreducible if
 For any two states 𝑖, 𝑗 ∈ X,  ∃	𝑛. 	𝑠. 𝑡. 	 𝑃< 𝑖, 𝑗 > 0.

 That is, there exists a path 𝑖 → 𝑗.



Fundamental Theorem for Markov Chains.
Theorem: 

If a finite Markov chain (X, P) is irreducible & aperiodic, then it has a unique
Invariant distribution 𝜋 with 𝜋 𝑖 > 0 for all 𝑖 ∈ X.

Also for any initial distribution 𝜋', as 𝑛 → ∞, we have 𝜋< = 𝜋' ⋅ 𝑃< converges 
to 𝜋.

That is, as for all 𝑖 ∈ X,	as  𝑛 → ∞, we have ℙ[𝑋< = 𝑖] → 𝜋 𝑖 .


