Lecture 15: Random Variables




Recap: The theory of Probability

Probability Space
Sample space () = the set of all possible outcomes
Probability measure P: () — |0,1]|. The probability of each outcome.
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Recap: The theory of Probability

Common pitfall
N possibilities = 1/N probability

For example, lottery has 2 possibilities

Winning the jackpo

e

Nothing




Recap: The theory of Probability

Common pitfall
N possibilities = 1/N probability

For example, lottery has 2 possibilities

>>1/2 Winning the jackpot

Nothing




Recap: Event

Event
An event I is a subset of outcomes.




Recap: Conditional Probability

Conditional Probability
Conditioning on an event £ is shrinking the probability space to E.




Recap: Conditional Probability

Conditional Probability

Conditioning on an event £ is shrinking the probability space to E.



Recap: Conditional Probability

Conditional Probability

Conditioning on an event E is shrinking the probability space to E.

For every outcome w € £, Plw|E| = %.

So that

wEEP[]
EIPa)lE P[E]

wWEE



Today’s Plan

Random Variables.
Definition.
Joint random variables.

Conditional random variables.

Bayesian Inference for Random Variables.
Prior/Posterior distribution

Example: Estimate the parameter of a coin. (maybe tmr)



Random Variables (Intuition)

Probability Space
Here is a way to think about probability space:
Every outcome is a state that the world could be in.




Random Variables (Intuition)

Probability Space
Here is a way to think about probability space:
Every outcome is a state that the world could be in.
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Random Variables (Intuition)

Random Variable
Consider a quantity X, say number of heads.
It has different values in different outcomes.
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X=4




Random Variables (Intuition)

Random Variable
Consider a quantity X, say number of heads.
For an observer inside a world (after we toss the coins), X is a value.
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Random Variables (Intuition)

Random Variable
Consider a quantity X, say number of heads.
For an observer outside (before we toss the coins), X is a variable.
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X =4




Random Variables (Formal Definition)

Definition (Random Variable)
A random variable X is a function X: () = R.
For every outcome w, it has a value X(w).
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Random Variables (Formal Definition)

Definition (Random Variable)
A random variable X is a function X: () = R.
For every outcome w, it has a value X(w).
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Distribution.

Definition (Distribution)
A Distribution D of random variable X is a tuple of:
- its support: All possible values of X.

- for each possible value a, the probability | X = a].
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Distribution.

Check.
Sum over possible value a, ).,

Proof.



Random Variables (Examples)

Example 1 (Rolling two dice).
Let X be the sum of two dice.
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Random Variables (Examples) ’

Example 1 (Rolling two dice). ‘Q?ﬂ

Let X be the sum of two dice.
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Random Variables (Examples) ’
Example 1 (Rolling two dice). ‘

Let X be the sum of two dice. Q




Random Variables (Examples)

Example 2 (Toss 100 coins).
Let X be the number of heads.

Because all outcomes are equally likely (uniform distribution),

P[X _ a] __ Outcomes with a heads (120)

" Total number of outcomes  2100°



Joint Random Variable (Definition)

Definition (Joint Random Variable)
For two random variable X, Y that are functions X, Y: () - R.
For every outcome w, it has a value X(w) and a value Y(w).

What is X? Whatis Y?




Joint Distribution (Definition)

Definition (Joint Distribution)
The joint distribution of X, Y has:
- support over pairs of possible values (x, y).

- For each (x, y), a probability
PX=xAY=y]




Marginal Distribution (Definition)

Definition (Marginal Distribution)

Given the joint distribution of X, Y, we can calculate the
distribution of X, called the X-marginal distribution.

P[X =x] =2, PX =x,Y =y]
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Marginal Distribution of X
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Independence (Definition)

Equivalent Definition 1:
We say two jointly distributed random variables, X, Y are independent if
PX=x|Y =y]=P[X =x].

“independence <> conditioning does not change distribution.”

Equivalent Definition 2:

We say two jointly distributed random variables, X, Y are independent if
P[X =xAY =y] = P[X = x|P[Y = y].

“independence < Joint distribution = product of the marginal distributions.”



Joint Distribution (Example)

Example 1 (Rolling two dice).
Let X; be the first die and X, be the second die.
We have the following probability space.



Joint Distribution (Example)

Example 1 (Rolling two dice).
Let X, be the first die and X, be the second die.
The joint distribution is just uniform.

We can calculate the marginal distribution.



Joint Distribution (Example) ’o

Example 1 (Rolling two dice). ‘
Let X, be the first die and X, be the second die.

The joint distribution is just uniform.
We can calculate the marginal distribution.

X; and X, are because the joint distribution is the
product of two marginal distributions.



Joint Distribution (Example) ’
Example 2 (Rolling two dice). ‘

Let S be the sum of two dice and
X, be the second die.

They are NOT independent.

Here we use the first equivalent definition:
Conditioning on the value of S changes the distribution of X,



Joint Distribution (Example) ’
Example 3 (Rolling one die). ‘9
Let X, be the die mod 2 and
X (3 be the die mod 3.

Are they independent?

Two equivalent way to roll the die:

1. Generate a random number

2. Generate random X,y = {0,1} and X3y = {0,1,2}.
Merge via CRT to get

These two processes are completely equivalent.



Conditional Random Variables (Intuition)

Conditioning
Say the observer know extra information:
The number of head is even.

HHHH
X=4




Conditional Random Variables (Intuition)

Conditioning
Say the observer know extra information:
The number of head is even.

Probability space shrinks.




Random Variables (Formal Definition)

Definition ( Random Variable)
A random variable X is a function X: () — R.
After conditioning on aevent E, we get X|E: E - R

which is just the function X restrict to E.

X=a N E

X|E = a] =
¢ E




Conditional Random Variables (Examples)

Example 1 (Rolling two dice). ’
Let X be the sum of two dice. E be X is prime. o
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Conditional Random Variables (Examples)
Example 1 (Rolling two dice). ’6
Let X be the sum of two dice. E be X is prime. ‘Q?‘
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Conditional Random Variables (Examples)
Example 1 (Rolling two dice). ’6
Let X be the sum of two dice. E be X is prime. ‘Q?‘
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Random Variables (Examples)

Example 2 (Toss 100 coins).
Let X be the number of heads. E be X is odd.

E (consider tossing first 99 coins, then the last one.)

E|l=2: for odd a. For even E



Prior distribution

Definition.
The prior distribution of X is its distribution before conditioning.
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Posterior distribution

Definition.
The posterior distribution of X is its distribution after conditioning.
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Example: Estimate of a coin

Example.
Suppose X has probability P of being 1.
and probability 1-P of being 0.

We know with probability 1/3, P = 1/2.
with probability 2/3, P =2/3. |
Now we observe that X=0. What is our belief for P?

— Prior distribution of P




Example: Estimate parameter of a coin

Probability space. P[P=1/2] =1/3 P[P=1/3]=2/3

/

P=1/2 P=1/3

If you only care about P, there are two possible worlds.



Example: Estimate parameter of a coin

Probability space. P[P=1/2] =1/3 P[P=1/3]=2/3

P[X=0| P=1/2] = 1/2 f

P=1/3

P[X=1| P=1/2] = 1/2

Within each of them, there are two possible worlds of X.



Example: Estimate parameter of a coin

Probability space. P[P=1/2] =1/3 P[P=1/3]=2/3

P[X=0| P=1/2]=1/2 f P[X=0| P=1/3] =2/3

P[X=1| P=1/2] = 1/2 P[X=1] P=1/3] =1/3

Within each of them, there are two possible worlds of X.



Example: Estimate parameter of a coin

Probability space.
P[X=0, P=1/2] = 1/6 P[X=0, P=1/3] = 4/9

P[X=1, P=1/2] =1/6

Equivalently, there are four possible worlds of X and P.



Example: Estimate parameter of a coin

Probability space.
P[X=0, P=1/2] = 1/6 P[X=0, P=1/3] = 4/9

Now we know X = 0. the space shrinks after conditioning.



Example: Estimate parameter of a coin
Probability space.

When we analyze this process and list the
probabilities, X is a random variable. It also has a
prior distribution.

P[X=0, P=1/2] = 1/6 P[X=0, P=1/3] = 4/9

P[X=0] = 1/6+4/9 = 11/18
P[X=1] = 1/6+2/9 =7/ 18

X=1,P=1/3

P[X=1, P=1/3] = 2/9

P[X=1, P=1/2] = 1/6



Example: Estimate parameter of a coin
Probability space.

When we observed the value of X, it is a fixed value

(realization). P has what we call posterior
distribution.

P[X=0, P=1/2] = 1/6 P[X=0, P=1/3] = 4/9

X=0,P=1/2

P[P=1/2 | X
P[P=1/3 | X

0]=1/6/(1/6+4/9)
0]=4/9/(1/6+4/9)



Debate: People vs. Collins

-

What witness said

Trial [ edit]

After a mathematics instructor testified about the multiplication rule for probability,
though ignoring conditional probability, the prosecutor invited the jury to consider the
probability that the accused (who fit a witness's description of a black male with a beard

and mustache and a Caucasian female with a blond ponytail, fleeing in a yellow car)
were not the robbers, suggesting that they estimated the probabilities as:

Black man with beard 1in 10
Man with mustache 1in4
White woman with pony tail 1in 10
White woman with blond hair 1 in 3

Yellow motor car 1in10

Interracial couple in car 1in 1,000

The jury returned a guilty verdict.["]

What prosecutor did

“Prosecutor’s fallacy’”’--- we might talk about it In 7/24 lecture



