
Lecture 15: Random Variables
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Recap: The theory of Probability
Probability Space
 Sample space Ω = the set of all possible outcomes
 Probability measure ℙ: 	 Ω → 0,1 .   The probability of each outcome.

          ∑!∈#ℙ 𝜔 = 1
 

Ω



Recap: The theory of Probability
Common pitfall
 N possibilities ≠ 1/N probability

 For example, lottery has 2 possibilities

Winning the jackpot

Nothing
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Recap: Event
Event
 An event E is a subset of outcomes.   
 

E
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Recap: Conditional Probability
Conditional Probability
  Conditioning on an event E is shrinking the probability space to E.
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Recap: Conditional Probability
Conditional Probability
  Conditioning on an event E is shrinking the probability space to E.

  For every outcome 𝜔 ∈ 𝐸, 	 ℙ 𝜔 E = ℙ !
ℙ %

.	

 
 

So that

1
!∈%

ℙ 𝜔 E =
∑!∈&	ℙ 𝜔
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      = 1



Today’s Plan
Random Variables.
 Definition.
 Joint random variables.
 Conditional random variables.

Bayesian Inference for Random Variables.
 Prior/Posterior distribution
 Example: Estimate the parameter of a coin.       (maybe tmr)
    



Random Variables (Intuition)
Probability Space
  Here is a way to think about probability space:
  Every outcome is a state that the world could be in.
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Probability Space
  Here is a way to think about probability space:
  Every outcome is a state that the world could be in.
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Random Variables (Intuition)
Random Variable
  Consider a quantity 𝑋, say number of heads.
  It has different values in different outcomes.  
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Random Variables (Intuition)
Random Variable
  Consider a quantity 𝑋, say number of heads.
  For an observer inside a world (after we toss the coins), 𝑋 is a value.  
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Random Variables (Intuition)
Random Variable
  Consider a quantity 𝑋, say number of heads.
  For an observer outside (before we toss the coins), 𝑋 is a variable.
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Random Variables (Formal Definition)
Definition (Random Variable)
  A random variable 𝑋 is a function	𝑋: Ω → ℝ.
  For every outcome 𝜔, it has a value 𝑋 𝜔 .
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Random Variables (Formal Definition)
Definition (Random Variable)
  A random variable 𝑋 is a function	𝑋: Ω → ℝ.
  For every outcome 𝜔, it has a value 𝑋 𝜔 .
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Distribution.
Definition (Distribution)
  A Distribution 𝐷 of random variable X is a tuple of:
  - its support:   All possible values of  X.
  - for each possible value a, the probability ℙ 𝑋 = 𝑎 .
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Distribution.
Check.
 Sum over possible value 𝑎, ∑!ℙ 𝑋 = 𝑎 = 1.

Proof.

(
!

ℙ 𝑋 = 𝑎 =(
!

(
":$ " %!

ℙ[𝜔] .

	 =(
"

(
!:$ " %!

ℙ[𝜔]

	 =(
"

ℙ[𝜔] = 1
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Random Variables (Examples)
Example 1 (Rolling two dice).
 Let 𝑋 be the sum of two dice. 
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Random Variables (Examples)
Example 1 (Rolling two dice).
 Let 𝑋 be the sum of two dice. 

1

2

3

4

5

6

1 2 3 4 5 6

𝑋!"(12)

𝑋!"(11)

𝑋!"(10)

𝑋!"(9)

𝑋!"(8)
2   3    4   5    6    7     8   9  10   11  12



Random Variables (Examples)
Example 1 (Rolling two dice).
 Let 𝑋 be the sum of two dice. 



Random Variables (Examples)
Example 2 (Toss 100 coins).
 Let 𝑋 be the number of heads. 

 Because all outcomes are equally likely (uniform distribution),  

  ℙ 𝑋 = 𝑎 = ()*+,-./	01*2	3	2.45/
6,*47	8)-9.:	,;	,)*+,-./	

=
!""
#

<!""
.



Joint Random Variable (Definition)
Definition (Joint Random Variable)
  For two random variable 𝑋, 𝑌 that are functions	𝑋, 𝑌: Ω → ℝ.
  For every outcome 𝜔, it has a value 𝑋 𝜔  and a value	𝑌 𝜔 .
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Joint Distribution (Definition)
Definition (Joint Distribution)
  The joint distribution of 𝑋, 𝑌 has:
  -  support over pairs of possible values 𝑥, 𝑦 .
  -  For each 𝑥, 𝑦 , a probability 

ℙ[𝑋 = 𝑥 ∧ 𝑌 = 𝑦]
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Marginal Distribution (Definition)
Definition (Marginal Distribution)
  Given the joint distribution of 𝑋, 𝑌, we can calculate the 
distribution of 𝑋, called the X-marginal distribution.
  ℙ 𝑋 = 𝑥 = ∑?ℙ[𝑋 = 𝑥, 𝑌 = 𝑦] 
 
 
“Projectio

n”



Independence (Definition)
Equivalent Definition 1: 

 We say two jointly distributed random variables, 𝑋, 𝑌 are independent if
 ℙ 𝑋 = 𝑥	 𝑌 = 𝑦] = ℙ[𝑋 = 𝑥].

Equivalent Definition 2: 
 We say two jointly distributed random variables, 𝑋, 𝑌 are independent if
 ℙ[𝑋 = 𝑥 ∧ 𝑌 = 𝑦] = ℙ 𝑋 = 𝑥 ℙ[𝑌 = 𝑦].

“independence ó Joint distribution = product of the marginal distributions.”

“independence ó conditioning does not change distribution.”



Joint Distribution (Example)
Example 1 (Rolling two dice). 
 Let 𝑋@ be the first die and 𝑋< be the second die.  
  We have the following probability space.
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Joint Distribution (Example)
Example 1 (Rolling two dice). 
 Let 𝑋@ be the first die and 𝑋< be the second die.  
  The joint distribution is just uniform.

 ℙ 𝑋@ = 𝑎, 𝑋< = 𝑏 = @
AB

  
 We can calculate the marginal distribution.

 ℙ 𝑋@ = 𝑎 = @
B
, ℙ 𝑋< = 𝑏 = @

B
 



Joint Distribution (Example)
Example 1 (Rolling two dice). 
 Let 𝑋@ be the first die and 𝑋< be the second die.  
  The joint distribution is just uniform.

 ℙ 𝑋@ = 𝑎, 𝑋< = 𝑏 = @
AB

  
 We can calculate the marginal distribution.

 ℙ 𝑋@ = 𝑎 = @
B
, ℙ 𝑋< = 𝑏 = @

B
 
  𝑋@  and 𝑋< are independent because the joint distribution is the 
 product of two marginal distributions.



Joint Distribution (Example)
Example 2 (Rolling two dice). 
 Let 𝑆	be the sum of two dice and 
 𝑋< be the second die. 
 
 They are NOT independent.
 ℙ 𝑋< = 1	|	𝑆 = 2 = 1
           ℙ 𝑋< = 1	|	𝑆 = 12 = 0
 
 Here we use the first equivalent definition:
 Conditioning on the value of S changes the distribution of 𝑋<



Joint Distribution (Example)
Example 3 (Rolling one die). 

 Let 𝑋(<)	be the die mod 2 and 
 𝑋(A) be the die mod 3. 
 
 Are they independent?

 Two equivalent way to roll the die:
 1.  Generate a random number 𝑋 = 	 {0,1,2, … , 5}.
 2.  Generate random 𝑋(<) = {0,1} and 𝑋(A) = {0,1,2}.
 Merge via CRT to get 𝑋.
 These two processes are completely equivalent.



Conditional Random Variables (Intuition)
Conditioning
  Say the observer know extra information:  
               The number of head is even.
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Conditional Random Variables (Intuition)
Conditioning
  Say the observer know extra information:  
               The number of head is even.
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Conditional Random Variables (Formal Definition)
Definition (Conditional Random Variable)
  A random variable 𝑋 is a function	𝑋: Ω → ℝ.
  After conditioning on a event 𝐸, we get 𝑋|𝐸: 𝐸 → ℝ 
  which is just the function 𝑋 restrict to 𝐸. 
  

ℙ 𝑋 𝐸 = 𝑎 =
ℙ[𝑋 = 𝑎 ∧ 	𝐸]

ℙ[𝐸]
 
 



Conditional Random Variables (Examples)
Example 1 (Rolling two dice).
 Let 𝑋 be the sum of two dice. 𝐸 be 𝑋 is prime. 
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Conditional Random Variables (Examples)
Example 1 (Rolling two dice).
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Conditional Random Variables (Examples)
Example 1 (Rolling two dice).
 Let 𝑋 be the sum of two dice. 𝐸 be 𝑋 is prime. 
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Conditional Random Variables (Examples)
Example 2 (Toss 100 coins).
  Let 𝑋 be the number of heads. 𝐸 be 𝑋 is odd.

 ℙ 𝐸 = @
<
	 (consider tossing first 99 coins, then the last one.) 

 

 ℙ 𝑋 = 𝑎	|	𝐸 = 2 ⋅
!""
#

<!""
 for odd 𝑎. For even 𝑎, ℙ 𝑋 = 𝑎	|	𝐸 =0.



Prior distribution
Definition.
 The prior distribution of X is its distribution before conditioning. 
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Posterior distribution
Definition.
 The posterior distribution of X is its distribution after conditioning. 
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Example: Estimate parameter of a coin
Example.
 Suppose X has probability P of being 1.
          and probability 1-P of being 0.
 
 We know with probability 1/3, P = 1/2.
         with probability 2/3, P = 2/3.
 Now we observe that X=0.  What is our belief for P?  

Prior distribution of P



Example: Estimate parameter of a coin
Probability space.

P = 1/2 P = 1/3

If you only care about P, there are two possible worlds.

ℙ[P=1/2] = 1/3 ℙ[P=1/3] = 2/3



Example: Estimate parameter of a coin
Probability space.

P = 1/2 P = 1/3
X = 0
X = 1

Within each of them, there are two possible worlds of X.

ℙ[P=1/2] = 1/3 ℙ[P=1/3] = 2/3
ℙ[X=0| P=1/2] = 1/2

ℙ[X=1| P=1/2] = 1/2



Example: Estimate parameter of a coin
Probability space.

P = 1/2 P = 1/3
X = 0
X = 1

X = 0
X = 1

Within each of them, there are two possible worlds of X.

ℙ[X=0| P=1/2] = 1/2

ℙ[X=1| P=1/2] = 1/2

ℙ[P=1/2] = 1/3 ℙ[P=1/3] = 2/3
ℙ[X=0| P=1/3] = 2/3

ℙ[X=1| P=1/3] = 1/3



Example: Estimate parameter of a coin
Probability space.

X = 0, P=1/2
X = 1, P=1/2

X = 0, P=1/3
X = 1, P=1/3

Equivalently, there are four possible worlds of X and P.

ℙ[X=0, P=1/2] = 1/6

ℙ[X=1, P=1/2] = 1/6

ℙ[X=0, P=1/3] = 4/9

ℙ[X=1, P=1/3] = 2/9



Example: Estimate parameter of a coin
Probability space.

X = 0, P=1/2 X = 0, P=1/3

Now we know X = 0. the space shrinks after conditioning.

X = 0, P=1/3

ℙ[X=0, P=1/2] = 1/6 ℙ[X=0, P=1/3] = 4/9

ℙ[P=1/2 | X = 0] = 
!
$

!
$E

%
&
= A

@@

Posterior distribution of P:



Example: Estimate parameter of a coin
Probability space.

When we analyze this process and list the 
probabilities, X is a random variable. It also has a 
prior distribution.

X = 0, P=1/2

X = 1, P=1/2

X = 0, P=1/3

X = 1, P=1/3

ℙ[X=0, P=1/2] = 1/6

ℙ[X=1, P=1/2] = 1/6

ℙ[X=0, P=1/3] = 4/9

ℙ[X=1, P=1/3] = 2/9

ℙ[X=0] = 1/6+4/9 = 11/18
ℙ[X=1] = 1/6+2/9 = 7 / 18



Example: Estimate parameter of a coin
Probability space.

When we observed the value of X, it is a fixed value 
(realization). P has what we call posterior 
distribution.

X = 0, P=1/2 X = 0, P=1/3

ℙ[X=0, P=1/2] = 1/6 ℙ[X=0, P=1/3] = 4/9

ℙ[P=1/2 | X=0] = 1/6 / (1/6+4/9) 
ℙ[P=1/3 | X=0] = 4/9 / (1/6+4/9)



Debate: People vs. Collins

What witness said What prosecutor did

“Prosecutor’s fallacy’’--- we might talk about it In 7/24 lecture 


