Discussion 1A

CS 70, Summer 2024

1 Translation

- (a) Convert the following statements from English to first-order logic. For each statement, state whether it is true or false with brief justification.
 - (i) There are real numbers which aren't rational.
 - (ii) A natural number is divisible by 6 only if it is divisible by both 3 and 2.
- (b) Convert the following statements from first-order logic to English. For each statement, state whether it is true or false with brief justification.

(i) $(\forall q \in \mathbb{Q})(q \in \mathbb{Z}).$

(ii) $(\forall k \in \mathbb{Z})(\exists n, m \in \mathbb{N})(k = n - m).$

2 Truth Tables

- (a) Prove whether each of the following propositions is tautologically true.
 - (i) $((P \lor Q) \land \neg P) \implies Q.$

(ii)
$$\neg (P \lor Q) \implies (\neg P \lor \neg Q).$$

(b) Prove whether each of the following pairs of propositions is tautologically equivalent.

(i) $P \lor (Q \land R)$ and $(P \lor Q) \land (P \lor R)$.

(ii) $\neg (P \implies Q)$ and $P \land \neg Q$.

3 Logical Implication

Determine which of the following logical implications are true. For those that are true, prove that they are; for those that are false, provide a model in which they are false.

(a) $\exists x P(x) \lor \exists x Q(x) \implies \exists x (P(x) \lor Q(x)).$

(b) $\exists x P(x) \land \exists x Q(x) \implies \exists x (P(x) \land Q(x)).$

(c) $\forall x \exists y R(x, y) \implies \exists y \forall x R(x, y).$